State Complexity of Projection on Languages Recognized by Permutation Automata and Commuting Letters

Stefan Hoffmann
University of Trier

International Conference on Developments in Language Theory (DLT) 2021,
August 16 - August 20, 2021
Porto, Portugal

Outline

Basic Notions

Permutation Automata

The Projection Operation

State Complexity of Projection on Permutation Automata General Result
Normal Subgroups

Commuting Letters \& Projection

Notation

- Deterministc partial automata (PDFA) by $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ as usual.
- Permutation automaton, if $q \mapsto \delta(q, a)$ is a permutation, i.e., bijective mapping, for every $a \in \Sigma$.
- Transformation monoid $\mathcal{T}_{\mathcal{A}}$: Monoid generated by the mappings $q \mapsto \delta(q, a), q \in Q$, for $a \in \Sigma$.
- State complexity of a regularity-preserving operation: largest number of states of an automaton for the result of this operation as a function of the size of automata for the input languages.

Permutation Groups

- Permutation groups are subgroups of the set of all permutations.
- Permutation groups model symmetries of objects (via automorphism groups).
- Example: Rubik's cube as a permutation group.

Denote permutations by the cycle notation.

Movements: $\quad(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)$ $(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)$ $(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)$ $(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)$ $(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)$ $(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)$

Aim: To a given permutation, find inverse permutation.
Possible strategy: apply sequence of commutators.

Permutation Automata \& State Complexity

1. McNaughton (Inf. \& Contr. 1967) devised an algorithm for languages recognizable by permutation automata to compute their star-height.
2. Thierrin (Math. Sys. Theo., 1968) investigated right-congruences induced by permutation automata and some closure properties.
3. Hospodár \& Mlynárčik (DLT 2020) investigated the state complexity of various operations on permutation automata.
4. Commutative closure was left open in Hospodár \& Mlynárčik (DLT 2020). A bound was obtained in Hoffmann (DCFS 2020), but tightness unknown.

Permutation Automata \& State Complexity

Operation	Closed?	State Complexity
L^{C}	Yes	n
$\cap, \cup, \backslash, \oplus$	Yes	$n m$
$K L$	No	$m 2^{n}-2^{n-1}-m+1$
L^{2}	No	$n 2^{n-1}-2^{n-2}$
L^{*}	No	$2^{n-1}+2^{n-2}$
L^{R}	Yes	$\binom{n}{\lfloor n / 2\rfloor}$
$L^{-1} K$	Yes	$\binom{m}{\lfloor m / 2\rfloor}, m \leq n$
$K L^{-1}$	Yes	$m, m \leq n$
$K!L$	No	$(m-1) n+m$
$\operatorname{perm}(L)$	No	$O\left((n \exp (\sqrt{n \ln n}))^{\|\Sigma\|}\right)$

The Projection Operation

Definition

Let $\Gamma \subseteq \Sigma$. Then, we define the projection homomorphism $\pi_{\Gamma}: \Sigma^{*} \rightarrow \Gamma^{*}$ onto Γ^{*} by

$$
\pi_{\Gamma}(x)= \begin{cases}x & \text { if } x \in \Gamma ; \\ \varepsilon & \text { otherwise }\end{cases}
$$

on the letters $x \in \Sigma$ and set $\pi_{\Gamma}(\varepsilon)=\varepsilon$ and $\pi_{\Gamma}(w a)=\pi_{\Gamma}(w) \pi_{\Gamma}(x)$ for $w \in \Sigma^{*}$ and $x \in \Sigma$.

Projection corresponds to a simplified or restricted view of a modelled system (for example observable properties of a discrete event system).

The Projection Operation

Fig. 1. An example of a simple system G: 729 states, 4400 transitions, 19 events.

Image from Jiráskova \& Masopust, On a Structural Property in the State Complexity of Projected Regular Languages (2012)

The Projection Operation

Fig. 2. Projection of $G: 27$ states, 62 transitions, 7 events.
Image from Jiráskova \& Masopust, On a Structural Property in the State Complexity of Projected Regular Languages (2012)

Projection \& State Complexity

The size of a recognizing automaton for a projected language is of interest, as it corresponds to the complexity of algorithms using a simplified view of a modelled system.

- Wong (1998), in the context of discrete event systems, has shown that the projection of a language recognized by an n-state PDFA is recognizable by a PDFA with at most $2^{n-1}+2^{n-2}-1$ states and this bound is tight.
- Refined by Jiráskova \& Masopust (2012) to the tight bound

$$
2^{n-1}+2^{n-m}-1
$$

with $m=\mid\{p, q: p \neq q$ and $q \in \delta(p, \Sigma \backslash \Gamma)\} \mid$ (number of unobservable nonloop transitions) for π_{Γ}.

Orbits \& The Projection Automaton

Definition
Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Suppose $\Sigma^{\prime} \subseteq \Sigma$ and $S \subseteq Q$. The Σ^{\prime}-orbit of S is the set

$$
\operatorname{Orb}_{\Sigma^{\prime}}(S)=\left\{\delta(q, u) \mid \delta(q, u) \text { is defined, } q \in S \text { and } u \in \Sigma^{\prime *}\right\} .
$$

Also, for $q \in Q$, we set $\operatorname{Orb}_{\Sigma^{\prime}}(q)=\operatorname{Orb}_{\Sigma^{\prime}}(\{q\})$.

Orbits \& The Projection Automaton

Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and $\Gamma \subseteq \Sigma$. Set $\Delta=\Sigma \backslash \Gamma$. Next, we define the projection automaton of \mathcal{A} for Γ as $\mathcal{R}_{\mathcal{A}}^{\Gamma}=\left(\mathcal{P}(Q), \Gamma, \mu, \operatorname{Orb}_{\Delta}\left(q_{0}\right), E\right)$ with, for $S \subseteq Q$ and $x \in \Gamma$, the transition function

$$
\begin{equation*}
\mu(S, x)=\operatorname{Orb}_{\Delta}(\delta(S, x)) \tag{1}
\end{equation*}
$$

and $E=\{T \subseteq Q \mid T \cap F \neq \varnothing\}$.
Theorem
Let \mathcal{A} be a DFA and $\Gamma \subseteq \Sigma$. Then, $\pi_{\Gamma}(L(\mathcal{A}))=L\left(\mathcal{R}_{\mathcal{A}}^{\Gamma}\right)$.

Orbits \& The Projection Automaton

Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and $\Gamma \subseteq \Sigma$. Set $\Delta=\Sigma \backslash \Gamma$. Next, we define the projection automaton of \mathcal{A} for Γ as $\mathcal{R}_{\mathcal{A}}^{\Gamma}=\left(\mathcal{P}(Q), \Gamma, \mu, \operatorname{Orb}_{\Delta}\left(q_{0}\right), E\right)$ with, for $S \subseteq Q$ and $x \in \Gamma$, the transition function

$$
\begin{equation*}
\mu(S, x)=\operatorname{Orb}_{\Delta}(\delta(S, x)) \tag{1}
\end{equation*}
$$

and $E=\{T \subseteq Q \mid T \cap F \neq \varnothing\}$.
Theorem
Let \mathcal{A} be a DFA and $\Gamma \subseteq \Sigma$. Then, $\pi_{\Gamma}(L(\mathcal{A}))=L\left(\mathcal{R}_{\mathcal{A}}^{\Gamma}\right)$.
Definition
An automaton \mathcal{A} is a state-partition automaton, if the set of reachable states of $\mathcal{R}_{\mathcal{A}}^{\Gamma}$ partitions Q.
For state-partition automata, $\pi_{\Gamma}(L(\mathcal{A}))$ is recognizable by an automaton with at most n states.

State Complexity of Projection on Permutation Automata

Theorem

1. $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a permutation automaton.
2. $\Gamma \subseteq \Sigma$.
3. $m=|\{p, q \in Q: p \neq q, q \in \delta(p, \Sigma \backslash \Gamma)\}|$.

Then:

1. If $m=0$, then $\pi_{\Gamma}(L(\mathcal{A}))$ is recognizable by an automaton with at most $|Q|$ states.
2. If $m>0$, then $\pi_{\Gamma}(L(\mathcal{A}))$ is recognizable by an automaton with at most $2^{|Q|-\left\lceil\frac{m}{2}\right\rceil}-1$ states.
3. These bounds are tight.

Proof Sketch.
The Γ-orbits partition the state set. Hence, the reachable states of $\mathcal{R}_{\mathcal{A}}{ }^{\top}$ are unions of Δ-orbits $\operatorname{Orb}_{\Gamma}(q), q \in Q$. We show tightness next.

start

$$
\begin{array}{rlrl}
a & =(1,2)(3,4) \cdots(2 m-1,2 m), & & \\
b & =(2 m+1,2 m+2), & & c=(2 m+1,2 m+2, \ldots, n), \\
d & =(1,3)(2,4), & & e=(1,3, \ldots, 2 m-1)(2,4, \ldots, 2 m), \\
f & =(1, n), & g=(1, n)(2, n-1)
\end{array}
$$

$\pi_{\Gamma}: \Sigma^{*} \rightarrow \Gamma^{*}$ with $\Gamma=\{b, c, d, e, f, g\}$. Self-Loops omitted.

$$
\begin{array}{rlrl}
a & =(1,2)(3,4) \cdots(2 m-1,2 m), & & \\
b & =(2 m+1,2 m+2), & & c=(2 m+1,2 m+2, \ldots, n) \\
d & =(1,3)(2,4), & & e=(1,3, \ldots, 2 m-1)(2,4, \ldots, 2 m), \\
f & =(1, n), & g=(1, n)(2, n-1)
\end{array}
$$

$\pi_{\Gamma}: \Sigma^{*} \rightarrow \Gamma^{*}$ with $\Gamma=\{b, c, d, e, f, g\}$. Self-Loops omitted.

start

$$
\begin{array}{rlrl}
a & =(1,2)(3,4) \cdots(2 m-1,2 m), & & \\
b & =(2 m+1,2 m+2), & & c=(2 m+1,2 m+2, \ldots, n) \\
d & =(1,3)(2,4), & & e=(1,3, \ldots, 2 m-1)(2,4, \ldots, 2 m) \\
f & =(1, n), & g=(1, n)(2, n-1)
\end{array}
$$

$\pi_{\Gamma}: \Sigma^{*} \rightarrow \Gamma^{*}$ with $\Gamma=\{b, c, d, e, f, g\}$. Self-Loops omitted.

start

$$
\begin{aligned}
a & =(1,2)(3,4) \cdots(2 m-1,2 m), & & \\
b & =(2 m+1,2 m+2), & & c=(2 m+1,2 m+2, \ldots, n) \\
d & =(1,3)(2,4), & & e=(1,3, \ldots, 2 m-1)(2,4, \ldots, 2 m), \\
f & =(1, n), & & g=(1, n)(2, n-1)
\end{aligned}
$$

$\pi_{\Gamma}: \Sigma^{*} \rightarrow \Gamma^{*}$ with $\Gamma=\{b, c, d, e, f, g\}$. Self-Loops omitted.

Normal Subgroups

In a group G, a subgroup N is called normal, if for every $g \in G$ we have $g N=N g$. In terms of automata:

Definition

Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a permutation automaton. Then, a subgroup N of $\mathcal{T}_{\mathcal{A}}$ is called normal, if, for each $\delta_{u}, \delta_{v} \in \mathcal{T}_{\mathcal{A}}$ $\left(u, v \in \Sigma^{*}\right)$,

$$
\left(\exists \delta_{w} \in N: \delta_{u}=\delta_{w v}\right) \Leftrightarrow\left(\exists \delta_{w^{\prime}} \in N: \delta_{u}=\delta_{v w^{\prime}}\right)
$$

Normal Subgroups

Theorem

1. $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ permutation automaton, $\Gamma \subseteq \Sigma$.
2. $N=\left\{\delta_{u}: Q \rightarrow Q: u \in(\Sigma \backslash \Gamma)^{*}\right\}$ normal in $\mathcal{T}_{\mathcal{A}}$.

Then, \mathcal{A} is a state-partition automaton for π_{Γ}.
Proof.
The action of the letters is compatible with the orbits for $\Delta=\Sigma \backslash \Gamma$, more precisely $\delta\left(\operatorname{Orb}_{\Delta}(q), x\right)=\operatorname{Orb}_{\Delta}(\delta(q, x))$.

Commuting Letters

Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an automaton with n states.

1. When is $\pi_{\Gamma}(L(\mathcal{A}))$ recognizable by an automaton with at most n states?
2. Hitherto, only state-partition automata and automata recognizing finite languages projected onto unary languages have this property.

The following property of $\Gamma \subseteq \Sigma$ ensures this:

$$
\delta(q, a b)=\delta(q, b a)
$$

for all $q \in Q, a \in \Sigma \backslash \Gamma, b \in \Gamma$.

Commuting Letters

Theorem
Suppose $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an arbitrary DFA. Let $\Gamma \subseteq \Sigma$ be such that, for each $a \in \Sigma \backslash \Gamma, b \in \Gamma$ and $q \in Q$, we have $\delta(q, a b)=\delta(q, b a)$. Then, $\pi_{\Gamma}(L)$ is recognizable by a DFA with at most $|Q|$ states.

Example

We have genuinely new automata whose projected image has state complexity at most $|Q|$. The following commutative automaton is neither a state-partition automaton, nor does it recognizes a finite language.

Varieties

A variety \mathcal{V} associates with every alphabet Σ a class of regular languages $\mathcal{V}\left(\Sigma^{*}\right)$ over Σ which is a

1. Boolean algebra,
2. closed under left- and right quotients, i.e.,

$$
u^{-1} L=\left\{v \in \Sigma^{*}: u v \in L\right\}, \quad L u^{-1} L=\left\{v \in \Sigma^{*}: v u \in L\right\}
$$

for $u \in \Sigma^{*}, L \in \mathcal{V}\left(\Sigma^{*}\right)$,
3. closed under inverse homomorphic images.

The class of languages recognized by permutation automata could be seen as a variety.

Varieties

A variety \mathcal{V} associates with every alphabet Σ a class of regular languages $\mathcal{V}\left(\Sigma^{*}\right)$ over Σ which is a

1. Boolean algebra,
2. closed under left- and right quotients, i.e.,

$$
u^{-1} L=\left\{v \in \Sigma^{*}: u v \in L\right\}, \quad L u^{-1} L=\left\{v \in \Sigma^{*}: v u \in L\right\}
$$

for $u \in \Sigma^{*}, L \in \mathcal{V}\left(\Sigma^{*}\right)$,
3. closed under inverse homomorphic images.

The class of languages recognized by permutation automata could be seen as a variety.

Our method of proofs implies the following:
Theorem
Let \mathcal{V} be a variety of commutative languages. If $L \in \mathcal{V}\left(\Sigma^{*}\right)$, then $\pi_{\Gamma}(L) \in \mathcal{V}\left(\Gamma^{*}\right)$.

Thank you for your attention!

All references could be found in the paper.

