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Notation

▸ Deterministc partial automata (PDFA) by A = (Q,Σ, δ,q0,F )
as usual.

▸ Permutation automaton, if q ↦ δ(q, a) is a permutation, i.e.,
bijective mapping, for every a ∈ Σ.

▸ Transformation monoid TA: Monoid generated by the
mappings q ↦ δ(q, a), q ∈ Q, for a ∈ Σ.

▸ State complexity of a regularity-preserving operation: largest
number of states of an automaton for the result of this
operation as a function of the size of automata for the input
languages.



Permutation Groups

▸ Permutation groups are subgroups of the set of all
permutations.

▸ Permutation groups model symmetries of objects (via
automorphism groups).

▸ Example: Rubik’s cube as a permutation group.

Denote permutations by the cycle notation.

(1,2,3,4)(5,6)(7) =
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34
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Movements: (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)

Aim: To a given permutation, find inverse permutation.
Possible strategy: apply sequence of commutators.



Permutation Automata & State Complexity

1. McNaughton (Inf. & Contr. 1967) devised an algorithm for
languages recognizable by permutation automata to compute
their star-height.

2. Thierrin (Math. Sys. Theo., 1968) investigated
right-congruences induced by permutation automata and
some closure properties.

3. Hospodár & Mlynárčik (DLT 2020) investigated the state
complexity of various operations on permutation automata.

4. Commutative closure was left open in Hospodár & Mlynárčik
(DLT 2020). A bound was obtained in Hoffmann (DCFS
2020), but tightness unknown.



Permutation Automata & State Complexity

Operation Closed? State Complexity

LC Yes n
∩,∪,∖,⊕ Yes nm
KL No m2n − 2n−1 −m + 1
L2 No n2n−1 − 2n−2

L∗ No 2n−1 + 2n−2

LR Yes (
n

⌊n/2⌋)
L−1K Yes (

m
⌊m/2⌋),m ≤ n

KL−1 Yes m,m ≤ n
K !L No (m − 1)n +m

perm(L) No O((n exp(
√
n lnn))∣Σ∣)



The Projection Operation

Definition
Let Γ ⊆ Σ. Then, we define the projection homomorphism
πΓ ∶ Σ∗ → Γ∗ onto Γ∗ by

πΓ(x) = {
x if x ∈ Γ;
ε otherwise;

on the letters x ∈ Σ and set πΓ(ε) = ε and πΓ(wa) = πΓ(w)πΓ(x)
for w ∈ Σ∗ and x ∈ Σ.

Projection corresponds to a simplified or restricted view of
a modelled system (for example observable properties of a
discrete event system).



The Projection Operation

Image from Jiráskova & Masopust, On a Structural Property in the State
Complexity of Projected Regular Languages (2012)
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Image from Jiráskova & Masopust, On a Structural Property in the State
Complexity of Projected Regular Languages (2012)



Projection & State Complexity

The size of a recognizing automaton for a projected language is of
interest, as it corresponds to the complexity of algorithms using a
simplified view of a modelled system.

▸ Wong (1998), in the context of discrete event systems, has
shown that the projection of a language recognized by an
n-state PDFA is recognizable by a PDFA with at most
2n−1 + 2n−2 − 1 states and this bound is tight.

▸ Refined by Jiráskova & Masopust (2012) to the tight bound

2n−1
+ 2n−m − 1

with m = ∣{p,q ∶ p ≠ q and q ∈ δ(p,Σ ∖ Γ)}∣ (number of
unobservable nonloop transitions) for πΓ.



Orbits & The Projection Automaton

Definition
Let A = (Q,Σ, δ,q0,F ) be a DFA. Suppose Σ′ ⊆ Σ and S ⊆ Q.
The Σ′-orbit of S is the set

OrbΣ′(S) = {δ(q,u) ∣ δ(q,u) is defined, q ∈ S and u ∈ Σ′∗
}.

Also, for q ∈ Q, we set OrbΣ′(q) = OrbΣ′({q}).



Orbits & The Projection Automaton

Let A = (Q,Σ, δ,q0,F ) be a DFA and Γ ⊆ Σ. Set ∆ = Σ ∖ Γ. Next,
we define the projection automaton of A for Γ as
RΓ
A = (P(Q),Γ, µ,Orb∆(q0),E) with, for S ⊆ Q and x ∈ Γ, the

transition function

µ(S , x) = Orb∆(δ(S , x)) (1)

and E = {T ⊆ Q ∣ T ∩ F ≠ ∅}.

Theorem
Let A be a DFA and Γ ⊆ Σ. Then, πΓ(L(A)) = L(RΓ

A).

Definition
An automaton A is a state-partition automaton, if the set of
reachable states of RΓ

A partitions Q.

For state-partition automata, πΓ(L(A)) is recognizable by an
automaton with at most n states.
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State Complexity of Projection on Permutation Automata

Theorem

1. A = (Q,Σ, δ,q0,F ) is a permutation automaton.

2. Γ ⊆ Σ.

3. m = ∣{p,q ∈ Q ∶ p ≠ q,q ∈ δ(p,Σ ∖ Γ)}∣.

Then:

1. If m = 0, then πΓ(L(A)) is recognizable by an automaton with
at most ∣Q ∣ states.

2. If m > 0, then πΓ(L(A)) is recognizable by an automaton with
at most 2∣Q ∣−⌈m

2
⌉ − 1 states.

3. These bounds are tight.

Proof Sketch.
The Γ-orbits partition the state set. Hence, the reachable states of
RΓ
A are unions of ∆-orbits OrbΓ(q), q ∈ Q. We show tightness

next.
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a = (1,2)(3,4)⋯(2m − 1,2m),
b = (2m + 1,2m + 2), c = (2m + 1,2m + 2, . . . ,n),
d = (1,3)(2,4), e = (1,3, . . . ,2m − 1)(2,4, . . . ,2m),
f = (1,n), g = (1,n)(2,n − 1).

πΓ ∶ Σ∗ → Γ∗ with Γ = {b, c ,d , e, f ,g}. Self-Loops omitted.
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Normal Subgroups

In a group G , a subgroup N is called normal, if for every g ∈ G we
have gN = Ng . In terms of automata:

Definition
Let A = (Q,Σ, δ,q0,F ) be a permutation automaton. Then, a
subgroup N of TA is called normal, if, for each δu, δv ∈ TA
(u, v ∈ Σ∗),

(∃δw ∈ N ∶ δu = δwv)⇔ (∃δw ′ ∈ N ∶ δu = δvw ′).



Normal Subgroups

Theorem

1. A = (Q,Σ, δ,q0,F ) permutation automaton, Γ ⊆ Σ.

2. N = {δu ∶ Q → Q ∶ u ∈ (Σ ∖ Γ)∗} normal in TA.
Then, A is a state-partition automaton for πΓ.

Proof.
The action of the letters is compatible with the orbits for
∆ = Σ ∖ Γ, more precisely δ(Orb∆(q), x) = Orb∆(δ(q, x)).



Commuting Letters

Let A = (Q,Σ, δ,q0,F ) be an automaton with n states.

1. When is πΓ(L(A)) recognizable by an automaton with at
most n states?

2. Hitherto, only state-partition automata and automata
recognizing finite languages projected onto unary languages
have this property.

The following property of Γ ⊆ Σ ensures this:

δ(q, ab) = δ(q,ba)

for all q ∈ Q, a ∈ Σ ∖ Γ, b ∈ Γ.



Commuting Letters

Theorem
Suppose A = (Q,Σ, δ,q0,F ) is an arbitrary DFA. Let Γ ⊆ Σ be
such that, for each a ∈ Σ ∖ Γ, b ∈ Γ and q ∈ Q, we have
δ(q, ab) = δ(q,ba). Then, πΓ(L) is recognizable by a DFA with at
most ∣Q ∣ states.

Example

We have genuinely new automata whose projected image has state
complexity at most ∣Q ∣. The following commutative automaton is
neither a state-partition automaton, nor does it recognizes a finite
language.

start

ab

b
aa,b



Varieties

A variety V associates with every alphabet Σ a class of regular
languages V(Σ∗) over Σ which is a

1. Boolean algebra,

2. closed under left- and right quotients, i.e.,

u−1L = {v ∈ Σ∗
∶ uv ∈ L}, Lu−1L = {v ∈ Σ∗

∶ vu ∈ L}

for u ∈ Σ∗, L ∈ V(Σ∗),
3. closed under inverse homomorphic images.

The class of languages recognized by permutation automata could
be seen as a variety.

Our method of proofs implies the following:

Theorem
Let V be a variety of commutative languages. If L ∈ V(Σ∗), then
πΓ(L) ∈ V(Γ

∗).
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Thank you for your attention!

All references could be found in the paper.
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