State Complexity of Projection on Languages Recognized by Permutation Automata and Commuting Letters

Stefan Hoffmann

University of Trier

International Conference on Developments in Language Theory (DLT) 2021, August 16 – August 20, 2021 Porto, Portugal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Basic Notions

Permutation Automata

The Projection Operation

State Complexity of Projection on Permutation Automata General Result Normal Subgroups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Commuting Letters & Projection

Notation

- Deterministic partial automata (PDFA) by $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ as usual.
- Permutation automaton, if $q \mapsto \delta(q, a)$ is a permutation, i.e., bijective mapping, for every $a \in \Sigma$.
- Transformation monoid *T_A*: Monoid generated by the mappings *q* → δ(*q*, *a*), *q* ∈ *Q*, for *a* ∈ Σ.
- State complexity of a regularity-preserving operation: largest number of states of an automaton for the result of this operation as a function of the size of automata for the input languages.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Permutation Groups

- Permutation groups are subgroups of the set of all permutations.
- Permutation groups model symmetries of objects (via automorphism groups).
- Example: Rubik's cube as a permutation group.

Denote permutations by the cycle notation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Permutation Automata & State Complexity

- 1. McNaughton (Inf. & Contr. 1967) devised an algorithm for languages recognizable by permutation automata to compute their star-height.
- Thierrin (Math. Sys. Theo., 1968) investigated right-congruences induced by permutation automata and some closure properties.
- Hospodár & Mlynárčik (DLT 2020) investigated the state complexity of various operations on permutation automata.
- Commutative closure was left open in Hospodár & Mlynárčik (DLT 2020). A bound was obtained in Hoffmann (DCFS 2020), but tightness unknown.

Permutation Automata & State Complexity

Operation	on Closed?	State Complexity
L^{C}	Yes	n
$\cap, \cup, \smallsetminus, \in$	⊕ Yes	nm
KL	No	$m2^n - 2^{n-1} - m + 1$
L^2	No	$n2^{n-1} - 2^{n-2}$
L*	No	$2^{n-1} + 2^{n-2}$
L^R	Yes	$\binom{n}{\lfloor n/2 \rfloor}$
$L^{-1}K$	Yes	$\binom{m}{ m/2 }, m \leq n$
KL^{-1}	Yes	$m, m \leq n$
K!L	No	(m-1)n+m
perm(L)) No	$O((n\exp(\sqrt{n\ln n}))^{ \Sigma })$

The Projection Operation

Definition Let $\Gamma \subseteq \Sigma$. Then, we define the projection homomorphism $\pi_{\Gamma} : \Sigma^* \to \Gamma^*$ onto Γ^* by

$$\pi_{\Gamma}(x) = \begin{cases} x & \text{if } x \in \Gamma; \\ \varepsilon & \text{otherwise;} \end{cases}$$

on the letters $x \in \Sigma$ and set $\pi_{\Gamma}(\varepsilon) = \varepsilon$ and $\pi_{\Gamma}(wa) = \pi_{\Gamma}(w)\pi_{\Gamma}(x)$ for $w \in \Sigma^*$ and $x \in \Sigma$.

Projection corresponds to a simplified or restricted view of a modelled system (for example observable properties of a discrete event system).

The Projection Operation

Fig. 1. An example of a simple system G: 729 states, 4400 transitions, 19 events.

Image from Jiráskova & Masopust, On a Structural Property in the State Complexity of Projected Regular Languages (2012)

The Projection Operation

Fig. 2. Projection of G: 27 states, 62 transitions, 7 events.

Image from Jiráskova & Masopust, On a Structural Property in the State Complexity of Projected Regular Languages (2012)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Projection & State Complexity

The size of a recognizing automaton for a projected language is of interest, as it corresponds to the complexity of algorithms using a simplified view of a modelled system.

- Wong (1998), in the context of discrete event systems, has shown that the projection of a language recognized by an *n*-state PDFA is recognizable by a PDFA with at most 2ⁿ⁻¹ + 2ⁿ⁻² - 1 states and this bound is tight.
- Refined by Jiráskova & Masopust (2012) to the tight bound

$$2^{n-1} + 2^{n-m} - 1$$

with $m = |\{p, q : p \neq q \text{ and } q \in \delta(p, \Sigma \setminus \Gamma)\}|$ (number of unobservable nonloop transitions) for π_{Γ} .

Orbits & The Projection Automaton

Definition

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Suppose $\Sigma' \subseteq \Sigma$ and $S \subseteq Q$. The Σ' -orbit of S is the set

 $\operatorname{Orb}_{\Sigma'}(S) = \{\delta(q, u) \mid \delta(q, u) \text{ is defined, } q \in S \text{ and } u \in \Sigma'^*\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Also, for $q \in Q$, we set $Orb_{\Sigma'}(q) = Orb_{\Sigma'}(\{q\})$.

Orbits & The Projection Automaton

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA and $\Gamma \subseteq \Sigma$. Set $\Delta = \Sigma \setminus \Gamma$. Next, we define the projection automaton of \mathcal{A} for Γ as $\mathcal{R}_{\mathcal{A}}^{\Gamma} = (\mathcal{P}(Q), \Gamma, \mu, \operatorname{Orb}_{\Delta}(q_0), E)$ with, for $S \subseteq Q$ and $x \in \Gamma$, the transition function

$$\mu(S, x) = \operatorname{Orb}_{\Delta}(\delta(S, x)) \tag{1}$$

and $E = \{T \subseteq Q \mid T \cap F \neq \emptyset\}.$

Theorem

Let \mathcal{A} be a DFA and $\Gamma \subseteq \Sigma$. Then, $\pi_{\Gamma}(L(\mathcal{A})) = L(\mathcal{R}_{\mathcal{A}}^{\Gamma})$.

Orbits & The Projection Automaton

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA and $\Gamma \subseteq \Sigma$. Set $\Delta = \Sigma \setminus \Gamma$. Next, we define the projection automaton of \mathcal{A} for Γ as $\mathcal{R}_{\mathcal{A}}^{\Gamma} = (\mathcal{P}(Q), \Gamma, \mu, \operatorname{Orb}_{\Delta}(q_0), E)$ with, for $S \subseteq Q$ and $x \in \Gamma$, the transition function

$$\mu(S, x) = \operatorname{Orb}_{\Delta}(\delta(S, x)) \tag{1}$$

and $E = \{T \subseteq Q \mid T \cap F \neq \emptyset\}.$

Theorem

Let \mathcal{A} be a DFA and $\Gamma \subseteq \Sigma$. Then, $\pi_{\Gamma}(L(\mathcal{A})) = L(\mathcal{R}_{\mathcal{A}}^{\Gamma})$.

Definition

An automaton \mathcal{A} is a state-partition automaton, if the set of reachable states of $\mathcal{R}_{\mathcal{A}}^{\Gamma}$ partitions Q.

For state-partition automata, $\pi_{\Gamma}(L(A))$ is recognizable by an automaton with at most *n* states.

State Complexity of Projection on Permutation Automata

Theorem

1. $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ is a permutation automaton.

3. $m = |\{p, q \in Q : p \neq q, q \in \delta(p, \Sigma \smallsetminus \Gamma)\}|.$

Then:

- 1. If m = 0, then $\pi_{\Gamma}(L(A))$ is recognizable by an automaton with at most |Q| states.
- 2. If m > 0, then $\pi_{\Gamma}(L(\mathcal{A}))$ is recognizable by an automaton with at most $2^{|\mathcal{Q}| \lceil \frac{m}{2} \rceil} 1$ states.
- 3. These bounds are tight.

Proof Sketch.

The Γ -orbits partition the state set. Hence, the reachable states of $\mathcal{R}_{\mathcal{A}}^{\Gamma}$ are unions of Δ -orbits $\operatorname{Orb}_{\Gamma}(q)$, $q \in Q$. We show tightness next.

$$\begin{array}{ll} a &= (1,2)(3,4)\cdots(2m-1,2m), \\ b &= (2m+1,2m+2), \\ d &= (1,3)(2,4), \\ f &= (1,n), \end{array} , \\ \begin{array}{ll} c = (2m+1,2m+2,\ldots,n), \\ e = (1,3,\ldots,2m-1)(2,4,\ldots,2m), \\ g = (1,n)(2,n-1). \end{array}$$

$$\begin{array}{ll} a &= (1,2)(3,4)\cdots(2m-1,2m),\\ b &= (2m+1,2m+2),\\ d &= (1,3)(2,4),\\ f &= (1,n), \end{array}$$

$$\begin{array}{ll} c = (2m+1,2m+2,\ldots,n),\\ e = (1,3,\ldots,2m-1)(2,4,\ldots,2m),\\ g = (1,n)(2,n-1). \end{array}$$

$$\begin{array}{ll} a &= (1,2)(3,4)\cdots(2m-1,2m),\\ b &= (2m+1,2m+2),\\ d &= (1,3)(2,4),\\ f &= (1,n), \end{array}$$

$$\begin{array}{ll} c = (2m+1,2m+2,\ldots,n),\\ e = (1,3,\ldots,2m-1)(2,4,\ldots,2m),\\ g = (1,n)(2,n-1). \end{array}$$

$$\begin{array}{ll} a &= (1,2)(3,4)\cdots(2m-1,2m), \\ b &= (2m+1,2m+2), \\ d &= (1,3)(2,4), \\ f &= (1,n), \end{array} , \begin{array}{ll} c = (2m+1,2m+2,\ldots,n), \\ c = (2m+1,2m+2,\ldots,n), \\ e = (1,3,\ldots,2m-1)(2,4,\ldots,2m), \\ g = (1,n)(2,n-1). \end{array}$$

Normal Subgroups

In a group G, a subgroup N is called normal, if for every $g \in G$ we have gN = Ng. In terms of automata:

Definition

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a permutation automaton. Then, a subgroup N of $\mathcal{T}_{\mathcal{A}}$ is called normal, if, for each $\delta_u, \delta_v \in \mathcal{T}_{\mathcal{A}}$ $(u, v \in \Sigma^*)$,

$$(\exists \delta_w \in N : \delta_u = \delta_{wv}) \Leftrightarrow (\exists \delta_{w'} \in N : \delta_u = \delta_{vw'}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Normal Subgroups

Theorem

- 1. $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ permutation automaton, $\Gamma \subseteq \Sigma$.
- 2. $N = \{\delta_u : Q \to Q : u \in (\Sigma \setminus \Gamma)^*\}$ normal in \mathcal{T}_A .

Then, A is a state-partition automaton for π_{Γ} .

Proof.

The action of the letters is compatible with the orbits for $\Delta = \Sigma \setminus \Gamma$, more precisely $\delta(\operatorname{Orb}_{\Delta}(q), x) = \operatorname{Orb}_{\Delta}(\delta(q, x))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Commuting Letters

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be an automaton with *n* states.

- When is π_Γ(L(A)) recognizable by an automaton with at most *n* states?
- 2. Hitherto, only state-partition automata and automata recognizing finite languages projected onto unary languages have this property.

The following property of $\Gamma \subseteq \Sigma$ ensures this:

$$\delta(q, ab) = \delta(q, ba)$$

for all $q \in Q$, $a \in \Sigma \setminus \Gamma$, $b \in \Gamma$.

Commuting Letters

Theorem

Suppose $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ is an arbitrary DFA. Let $\Gamma \subseteq \Sigma$ be such that, for each $a \in \Sigma \setminus \Gamma$, $b \in \Gamma$ and $q \in Q$, we have $\delta(q, ab) = \delta(q, ba)$. Then, $\pi_{\Gamma}(L)$ is recognizable by a DFA with at most |Q| states.

Example

We have genuinely new automata whose projected image has state complexity at most |Q|. The following commutative automaton is neither a state-partition automaton, nor does it recognizes a finite language.

Varieties

A variety $\mathcal V$ associates with every alphabet Σ a class of regular languages $\mathcal V(\Sigma^*)$ over Σ which is a

- 1. Boolean algebra,
- 2. closed under left- and right quotients, i.e.,

$$u^{-1}L = \{v \in \Sigma^* : uv \in L\}, \quad Lu^{-1}L = \{v \in \Sigma^* : vu \in L\}$$

for $u \in \Sigma^*$, $L \in \mathcal{V}(\Sigma^*)$,

3. closed under inverse homomorphic images.

The class of languages recognized by permutation automata could be seen as a variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Varieties

A variety $\mathcal V$ associates with every alphabet Σ a class of regular languages $\mathcal V(\Sigma^*)$ over Σ which is a

1. Boolean algebra,

2. closed under left- and right quotients, i.e.,

$$u^{-1}L = \{ v \in \Sigma^* : uv \in L \}, \quad Lu^{-1}L = \{ v \in \Sigma^* : vu \in L \}$$

for $u \in \Sigma^*$, $L \in \mathcal{V}(\Sigma^*)$,

3. closed under inverse homomorphic images.

The class of languages recognized by permutation automata could be seen as a variety.

Our method of proofs implies the following:

Theorem

Let \mathcal{V} be a variety of commutative languages. If $L \in \mathcal{V}(\Sigma^*)$, then $\pi_{\Gamma}(L) \in \mathcal{V}(\Gamma^*)$.

Thank you for your attention!

All references could be found in the paper.