
State Complexity of Permutation and Related
Decision Problems on Alphabetical Pattern

Constraints

Stefan Hoffmann

University of Trier

International Conference on Implementation and Application of
Automata (CIAA) 2021,

July 19 – July 22, 2021 (online)
Organizers: Sebastian Maneth, Peter Leupold, Kathryn Lorenz,

Martin Vu



Basic Notions

1. [n] = {1, . . . ,n}.

2. Non-deterministic automata (NFAs).

3. Deterministc partial automata (PDFA).

4. Partially ordered (pto) NFAs: The reachability relation
induced by the words is a partial order.
Equivalently, the only loops and cycles are self-loops.
(removing self-loops yields a directed acyclic graph)

Remark
pto NFAs are strictly more expressive than pto PDFAs. (example,
famous NFA/DFA tradeoff language: {a,b}∗a{a,b}n, or
{a,b}∗aa∗)



Basic Notions

1. [n] = {1, . . . ,n}.

2. Non-deterministic automata (NFAs).

3. Deterministc partial automata (PDFA).

4. Partially ordered (pto) NFAs: The reachability relation
induced by the words is a partial order.
Equivalently, the only loops and cycles are self-loops.
(removing self-loops yields a directed acyclic graph)

Remark
pto NFAs are strictly more expressive than pto PDFAs. (example,
famous NFA/DFA tradeoff language: {a,b}∗a{a,b}n, or
{a,b}∗aa∗)



Basic Notions

Let A be an NFA.

1. A labeled path in A is called simple, if the states read after
each prefix are distinct, i.e., no state is repeated along the
path.

2. Lsimple(A) = {w labels a simple accepting path in A}.

start

a b

a

a
a

b

A pto NFA A with Lsimple(A) = {b, ab}.



Shuffle Operation

Definition (Shuffle operation)

The shuffle operation, denoted by �, is defined by

u� v ∶= { x1y1x2y2⋯xnyn ∣
u = x1x2⋯xn, v = y1y2⋯yn,
xi , yi ∈ Σ∗,1 ≤ i ≤ n,n ≥ 1

} ,

for u, v ∈ Σ∗ and L1� L2 ∶= ⋃x∈L1,y∈L2
(x � y) for L1,L2 ⊆ Σ∗.

{ab}� {cd} = {abcd , acbd , acdb, cadb, cdab, cabd}



Shuffle Operation

Definition (Shuffle operation)

The shuffle operation, denoted by �, is defined by

u� v ∶= { x1y1x2y2⋯xnyn ∣
u = x1x2⋯xn, v = y1y2⋯yn,
xi , yi ∈ Σ∗,1 ≤ i ≤ n,n ≥ 1

} ,

for u, v ∈ Σ∗ and L1� L2 ∶= ⋃x∈L1,y∈L2
(x � y) for L1,L2 ⊆ Σ∗.

{ab}� {cd} = {abcd , acbd , acdb, cadb, cdab, cabd}



State Complexity of Operations

1. State complexity of a regular language: size of a minimal
deterministic automaton for the language.

2. State complexty of a regularity-preserving operation: greatest
state complexity of the result of this operation (usually
measured in terms of the state complexities of the input
languages).

3. Classically investigated for deterministic (partial) automata.
But has been also investigated for non-deterministic
automata, 2-way automata models, unambiguous automata,
alternating automata.

4. Example: bounds nm are tight for union/intersection, bound
2n−1 + 2n−2 for Kleene star etc .



State Complexity of Operations

1. State complexity of a regular language: size of a minimal
deterministic automaton for the language.

2. State complexty of a regularity-preserving operation: greatest
state complexity of the result of this operation (usually
measured in terms of the state complexities of the input
languages).

3. Classically investigated for deterministic (partial) automata.
But has been also investigated for non-deterministic
automata, 2-way automata models, unambiguous automata,
alternating automata.

4. Example: bounds nm are tight for union/intersection, bound
2n−1 + 2n−2 for Kleene star etc .



Commutative Closure and APCs

Straubing-Thérien Hierarchy (Straubing 1981, Thérien 1981)

Start with {∅,Σ∗} and build alternately finite unions of marked
products L0a1L1⋯anLn with L1,⋯,Ln from the previous level
(half-levels) or the boolean closure of the previous level (full levels).

Example
Level 1/2: Σ∗aΣ∗bΣ∗ ∪ΣbΣ∗.
Level 1: Σ∗ ∖ (Σ∗aΣ∗).
Level 3/2: {a}∗a{b, c}∗a{c}∗ ∪ {a,b}∗c .

Definition (Bouajjani, Muscholl & Touili 2007)

The languages from level 3/2 are called Alphabetical Pattern
Constraints (APCs).

Remark (Schwentick, Thérien & Vollmer 2001)

Partially ordered NFAs characterize APCs.



Commutative Closure and APCs

Straubing-Thérien Hierarchy (Straubing 1981, Thérien 1981)

Start with {∅,Σ∗} and build alternately finite unions of marked
products L0a1L1⋯anLn with L1,⋯,Ln from the previous level
(half-levels) or the boolean closure of the previous level (full levels).

Example
Level 1/2: Σ∗aΣ∗bΣ∗ ∪ΣbΣ∗.
Level 1: Σ∗ ∖ (Σ∗aΣ∗).
Level 3/2: {a}∗a{b, c}∗a{c}∗ ∪ {a,b}∗c .

Definition (Bouajjani, Muscholl & Touili 2007)

The languages from level 3/2 are called Alphabetical Pattern
Constraints (APCs).

Remark (Schwentick, Thérien & Vollmer 2001)

Partially ordered NFAs characterize APCs.



Commutative Closure and APCs

The commutative closure is regularity-preserving on APCs. In fact,
as

perm(Σ∗
0a1Σ∗

1⋯anΣ∗
n) = perm(a1⋯an)� (Σ0 ∪ . . . ∪Σn)

∗.

and
u� Γ∗ = (u�Σ∗

) ∩ ⋃
a∈Σ∖Γ

perm(va)�Σ∗

for Γ ⊆ Σ, the commutative closure is a level one language.

Remark
We have (ab)∗ = (aΣ∗ ∩Σ∗b) ∖ (Σ∗aaΣ∗ ∪Σ∗bbΣ∗) and

perm((ab)∗) = { words with equal number of a’s and b’s }.

So, for the next (full) level of the Straubing-Thérien hierarchy, the
commutative closure is not regularity-preserving.



Commutative Closure and APCs

Theorem: Let L be an APC recognized by a pto NFA A.
Then, perm(L) is recognizable by a PDFA of size at most

∏
a∈Σ

(max{∣u∣a ∶ u ∈ L
simple

(A)} + 1)

Σ = {a1, . . . , ak}.

1. Set nj = max{∣u∣aj ∣ u ∈ L
simple(A)} + 1, j ∈ {1, . . . , k}.

2. PDFA for perm(L): B = (Σ,Q, δ,q0,F ) with
Q = [n1 + 1] × . . . × [nk + 1] and δ((s1, . . . , sk), aj) equals

{
(s1, . . . , sj−1, sj + 1, sj+1, . . . , sk) if sj < nj
(s1, . . . , sk) if sj = nj , a

s1

1 ⋯askk aj ∈ perm(Pref(L)).

3. q0 = (0, . . . ,0),

4. F = {δ(q0,w) ∣ w ∈ L and ∀j ∈ {1, . . . , k} ∶ ∣w ∣aj ≤ nj}.



Proof Example

start

a b

a

a
a

b
start

b

a

b

a
a

A pto NFA A with Lsimple(A) = {b, ab}.

perm(L(A)) = perm(a∗ba∗ ∪ a∗ab) = {a,b}∗b{a,b}∗.



Commutative Closure and APCs

Corollary

Let L be an APC recognized by a partially ordered NFA with n
states. Then, perm(L) is recognizable by a PDFA with at most
n∣Σ∣ many states.

Unknown if this bound is tight.



Strict Shuffle Languages

Let L ⊆ Σ∗. If L =�a∈Σ{a∣u∣a ∣ u ∈ L}, then we call it a
strict shuffle language.
(equivalently, L = πa1(L)� . . .�πak (L) for one-letter projec-
tion languages and Σ = {a1, . . . , ak})

Example

1. If u ∈ Σ∗, then perm(u) is a strict shuffle language.

2. The language
{u ∈ {a,b}∗ ∣ ∣u∣a = 1 and 2 ≤ ∣u∣ ≤ n} = {a}� {b,b2, . . . ,bn−1}

is a strict shuffle language.

3. perm({aabb, ab}) is not a strict shuffle language.

4. perm({aaabbb, abbb, aaab, ab}) is a strict shuffle language.



Strict Shuffle Languages

Theorem: Let L be an APC language recognized by a pto
NFA A with n states s.t. perm(Lsimple(A)) is a strict shuffle
language. Then, perm(L) is recognizable by a PDFA with

⌈
n − 1

∣Σ∣
+ 1⌉

∣Σ∣

many states and this bound is sharp even for finite languages.

1. Aut. for Lsimple(A) at least (Σa∈Σ max{∣u∣a ∶ u ∈ πa(L)}) + 1
states.

⇒ So 0 ≤ (Σa∈Σ max{∣u∣a ∶ u ∈ πa(L)}) + 1 ≤ n.

2. The value ∏a∈Σ(max{∣u∣a ∶ u ∈ L
simple(A)} + 1) with

0 ≤ (Σa∈Σ max{∣u∣a ∶ u ∈ πa(L)}) + 1 ≤ n is maximized if
max{∣u∣a ∶ u ∈ L

simple(A)} equals (n − 1)/∣Σ∣ for every
a ∈ Σ.



Strict Shuffle Languages

Corollary

Let L = Σ∗
0a1Σ∗

1a2⋯amΣ∗
m. Then, perm(L) is recognizable by a

PDFA with at most ⌈m/∣Σ∣ + 1⌉∣Σ∣ many states. In particular, the
commutative closure of a single word u could be recognized by a
PDFA with at most ⌈∣u∣/∣Σ∣ + 1⌉∣Σ∣ many states and this bound is
sharp.

Remark (Sharpness)

L = {am1 ⋯amk }. Recognizable by pto NFA with km + 1 states, PDFA
for commutative closure needs (m + 1)k states.



Lemma
For a given partially ordered NFA A an APC expression of L(A)

could be computed in P and for every APC expression a partially
ordered NFA is computable in P. This result also holds for variable
input alphabets.

Proposition

Given a partially ordered NFA A with n states, the recognizing
PDFA for perm(L(A)) from above could be constructed in
polynomial time for a fixed alphabet. More precisely in time
O(n∣Σ∣+2).



Computational Complexity

Theorem
Fix an alphabet Σ. Then, the following problem is in P:
Input: Two APC expressions L1,L2 over Σ∗.
Question: Is perm(L1) ⊆ perm(L2)?

Proof.

1. Construct two NFAs A1 and A2 for L1 and L2, in P by
previous Lemma.

2. Compute PDFAs B1 and B2 for their respective commutative
closures, which could be done in P.

3. For PDFAs,

L(B1) ⊆ L(B2) ⇔ L(B1) ∩ L(B2) = ∅.

could be done in P.



Computational Complexity

Corollary

Fix an alphabet Σ. Then, the following problem is in P:
Input: An APC expression L over Σ∗.
Question: Is perm(L) = Σ∗?

Corollary

Fix an alphabet Σ. Given an APC describing a commutative
language, the universality problem is in P. Also, given two APCs
describing commutative languages, the inclusion problem is
solvable in polynomial time.



Thank you for your attention!

Thanks to the organizers Sebastian Maneth, Peter Leupold,
Kathryn Lorenz and Martin Vu!

Hopefully next time in person! ,


	State Complexity of Operations
	Questions of Computational Complexity

