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Let me Introduce, The Three Main Protagonists:

The Class of Group Languages G.

Languages recognized by permutation automata, i.e, where every

letter permutes the states.

The Shuffle Product and the Iterated Shuffle.

All ways to interleave the words of two languages, and to interleave

the words of a single language n-times for all n ≥ 0.

The Commutative Closure.

Closure of a language L under permuting the letters of the words

in L.
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An Example of a Permutation Automaton

Both letters partition the state set into cycles.

s0

s2

s1

Q = {s0, s1, s2}

a1, a2

a2a1 a1

a2
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Shuffle Operation

Definition (Shuffle operation)
The shuffle operation, denoted by �, is defined by

u� v :=

{
x1y1x2y2 · · · xnyn |

u = x1x2 · · · xn, v = y1y2 · · · yn,
xi , yi ∈ Σ∗, 1 ≤ i ≤ n, n ≥ 1

}
,

for u, v ∈ Σ∗ and L1 � L2 :=
⋃

x∈L1,y∈L2
(x � y) for L1, L2 ⊆ Σ∗.

Example
{ab}� {cd} = {abcd , acbd , acdb, cadb, cdab, cabd}
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The Commutative Closure

The commutative closure, mapping languages L into commutative

languages, is denoted by perm(L).

Example: perm({abc}) = {abc, bac, acb, cba, bca, cab}.

The Parikh map ψ : Σ∗ → N|Σ|0 is

ψ(w) = (|w |a1 , . . . , |w |ak ),

where |w |ai denotes the number of occurrences of the letter ai in w .
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A Prequel, Featuring Two Protagonists:

A. Gomez, G. Guaiana, J.-E. Pin (2013) have shown that the

commutative closure on group languages is regularity-preserving.

Actually, this is also implied by more general results about language

equation due to M. Kunc (2005), see also the chapter Language

Equations in the upcoming Handbook of Automata Theory by Kunc &

Okhotin (available online).

The proofs were based on well-quasi-order arguments. How to construct

an automaton was not clear.

Last year (Hoffmann, DCFS 2020), an automaton was constructed using

the state label method.

Theorem
Let Σ = {a1, . . . , ak} and A = (Σ,Q, δ, q0,F ) be a permutation

automaton. Then perm(L(A)) is recognizable by an automaton with at

most
(
|Q|k

∏k
i=1 Li

)
states, where Li for i ∈ {1, . . . , k} denotes the

order of ai . Furthermore, the recognizing automaton is computable.
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The Shuffle Languages, or The First Two Protagonists Bond

Definition
Let L be a class of languages.

1. SE(L) is the closure of L under shuffle, iterated shuffle, union,

concatenation and Kleene star.

Here, we look at SE(G) for the class of group languages G.
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The Shuffle Languages, The Third Protagonist Enters

We will show that the commutative closure is (effectively) regular on

shuffle languages over G, i.e., we can compute a recognizing automaton

from the input automata. We need:

Theorem

Let Σ = {a1, . . . , ak} and A = (Σ,Q, δ, q0,F ) be a permutation

automaton. Then

perm(L(A)�,∗)

is recognizable by an automaton with at most
(
|Q|k

∏k
j=1 Lj

)
+ 1 many

states, where Lj for j ∈ {1, . . . , k} denotes the order of aj , and this

automaton is effectively computable.
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The Method of Proof

The proof uses an adaption of the state label method introduced in

(Hoffmann, DCFS 2020). Let A = (Σ,Q, δ, q0,F ).

The method in a nutshell: We label points N|Σ|0 with subsets of states

from A. When A is a permutation automaton, these labelings induce

(uniform) periodicities that allow us to construct automata for the

commutative closure.
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Method of Proof – The Basic Case

s0

s2

s1

Q = {s0, s1, s2}

a1, a2

a2a1 a1

a2

{s0} {s1} {s2} {s0} {s1} . . .

{s1}

{s0}

{s1}

{s0}

...
...

...
...

...

{s0, s2} Q Q Q . . .

{s1, s2} Q Q Q . . .

{s0, s2} Q Q Q . . .

{s1, s2} Q Q Q . . .

a1 a1 a1 a1 a1

a2

a2

a2

a2

a2

a1 a1 a1 a1 a1

a1 a1 a1 a1 a1

a1 a1 a1 a1 a1

a1 a1 a1 a1 a1

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2

State Label at point p: Sp = {δ(q0, u) | ψ(u) = p}.
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Method of Proof

How to adapt this method to the iterated shuffle of group languages?

Let Σ = {a1, . . . , ak} and ei = ψ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nk
0 be the

vector with 1 precisely at the i-th position and zero everywhere else. If

A = (Σ,Q, δ, q0,F ) is an automaton, set

T(0,...,0) = {q0} and Tp =
⋃

∃i∈{1,...k}:p=q+ei

δ(S+
q , ai ) for p 6= (0, . . . , 0),

where

S+
p =

{
Tp ∪ {q0} if Tp ∩ F 6= ∅;
Tp if Tp ∩ F = ∅.

Then, v ∈ perm(L(A)∗)⇔ S+
p ∩ F 6= ∅ or v = ε.
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Method of Proof

S+
(pa−1,pb)

S+
(pa,pb) . . .

S+
(pa−1,pb+1)

...

S+
(pa,pb+1)

. . .

...

a a

b

b

a
b

b

a

T(pa,pb+1) = δ(S+
(pa−1,pb+1), a) ∪ δ(S+

(pa,pb), b) (1)

S+
(pa,pb+1) =

{
T(pa,pb+1) ∪ {s0} if T(pa,pb+1) ∩ F 6= ∅;
T(pa,pb+1) otherwise,

(2)
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Method of Proof

As we have permutation automata, the state labels grow in size and

become ultimately period for some uniform constant.

We have a universal bound N ≥ 0 and a period P > 0 such that, for

p = (p1, . . . , pk) ∈ NK
0 \ ([N]× . . .× [N]) and j ∈ {1, . . . , k}, the labels

at p and (p1, . . . , pj−1, pj − P, pj+1, . . . , pk) are equal.

The commutative closure of the language described by the original

automaton is regular and could be accepted by an automaton of size at

most Nk .
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The Shuffle Languages, The Third Protagonist Enters

Finally:

1. With respect to the commutative closure we can replace

concatenation and Kleene star by shuffle and iterated shuffle.

2. Every language in Shuf (G) could be written as a finite union of

languages of the form

L1 � . . .� Lk � L�,∗
k+1 � . . .� L�,∗

n

with 1 ≤ k ≤ n and Li ∈ G.

Hence, as the commutative closure respects the shuffle operation and

union, the result follows, and all operations are effective.

(the size of an accepting automaton has size exp(
√
n log n), where n is

the sum of the number of states of all the involved automata in the

atomic languages of a shuffle expression for L ∈ Shuf (G)).
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A Natural Question

We have shown that the commutative closure of a language in Shuf (G)

is regular. But, are all languages in Shuf (G) regular?

Regularity of the closure is not sufficient for regularity of the original

language: The non-regular context-free language given by the grammar

G over {a, b} with rules

S → aTaS | ε, T → bSbT | ε.

for example as a regular language as the commutative closure.

Open Problem
This was posed as an open problem in the CIAA paper.
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A Natural Question

Good News!

The Question was solved, and indeed they are!

More generally, this follows as polynomials (unions of marked products)

of 0-group languages1 languages are closed under iterated shuffle.

Still an open question
Size of accepting automata?

1Using 0-groups instead of groups is a technicality if we allow operations of group

languages over different alphabets, for example (aa)∗ ∪ (bbb)∗ – I was vague in the

initial definition on this. If we view G as a variety, such things are excluded.
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A Natural Question

An insertion system is a special type of rewriting system whose rules are

of the form ε→ r for all r in a given language R ⊆ Σ∗. We write u →R v

if u = u′u′′ and v = u′ru′′ for some r ∈ R. We denote by →∗R the

reflexive transitive closure of the relation →R . Then, for L ⊆ Σ∗, we set

[L]→∗
R

= {v ∈ Σ∗ | there exists u ∈ L such that u →∗R v}.

Clearly, we have L ⊆ [L]→∗
R

.

Let L = L0a1L1 · · · anLn be a marked product with group languages

Li ⊆ Σ∗. Choose recognizing morphisms ϕi : Σ∗ → Gi with finite groups

Gi and set R =
⋂n

i=1 ϕ
−1
i (1).

1. For any language U ⊆ Σ∗, [U]→∗
R

is a polynomial of group

languages.

2. For L = L0a1L1 · · · anLn and R ⊆ Σ∗ as above, we have [L]→∗
R
⊆ L.

3. For any U,K ⊆ Σ∗, we have [perm(U)]→∗
K
⊆ perm([U]→∗

K
).
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A Natural Question

As (U ∪ V )�,+ = (U�,+
� V�,+) ∪ U�,+ ∪ V�,+ for any U,V ⊆ Σ∗ and Pol(G) is

closed under shuffle and union by (Gomez,Guiana,Pin), we only need to show the

claim for marked products.

Let L = L0a1L1 · · · anLn be a marked product over G and R ⊆ Σ∗ defined as in the

beginning of this section with respect to L. We show that L�,∗ is closed under the

relation →R , which inductively yields closure under →∗R . Let uv ∈ u1 � . . .� um with

ui ∈ L for some m > 0. Hence,

uv = u1,1u2,1 · · · um,1u1,2u2,2 · · · um,2 · · · u1,ru2,r · · · um,r

with ui = ui,1 · · · ui,r for some r ≥ 0. Choose x ∈ R.

Suppose uxv = u1,1u2,1 · · · um,1 · · · u′i,jxu
′′
i,jui+1,j · · · u1,ru2,r · · · um,r with

i ∈ {1, . . . ,m} and j ∈ {1, . . . , r} with u′i,ju
′′
i,j = ui,j (note that the argument to come

entails uxv = u1,1u2,1 · · · um,1 · · · u′m,rxu
′′
m,r as the case i = m and j = r and, as i = m

and j < r , the case uxv = u1,1u2,1 · · · um,1 · · · u′m,jxu
′′
m,ju1,j+1 · · · um,r , even if the

notation suggests there might be an index i + 1 or j + 1 the argument is the same

without them).

Set w = ui,1 · · · u′i,jxu
′′
i,jui,j+1 · · · ui,r . Then,

uxv ∈ u1 � . . .� ui−1 � w � ui+1 � . . . um. So, w ∈ L (L is closed for insertion from

identity language) and so uxv ∈ L�,m ⊆ L�,+.

Hence, L�,+ is upward-closed for →∗R , which gives [L�,+]→∗
R

= L�,+. 17


