Regularity Conditions for Iterated Shuffle on Commutative Regular Languages

Stefan Hoffmann, Universität Trier, Germany

International Conference on Implementation and Application of Automata (CIAA) 2021,
July 19 - July 22, 2021 (virtuell)
Organizers: Sebastian Maneth, Peter Leupold, Kathryn Lorenz, Martin Vu
July, 2021

Notation

Let Σ be some finite alphabet.
Languages: subsets of Σ^{*} (the free monoid).
ε : the empty word.
Definition (Commutative language)
A language $L \subseteq \Sigma^{*}$ is called commutative if it is closed under arbitrary permutation of words.

Example 0.1
$U=\{a a b, a b a, b a a\}$ is commutative, $V=\{a b\}$ is not, as $b a \notin V$.

$$
\psi(w)=\left(|w|_{a_{1}}, \ldots,|w|_{a_{k}}\right)
$$

where $|w|_{a_{i}}$ denotes the number of occurrences of the letter a_{i} in w.

Notation

Let Σ be some finite alphabet.
Languages: subsets of Σ^{*} (the free monoid).
ε : the empty word.
Definition (Commutative language)
A language $L \subseteq \Sigma^{*}$ is called commutative if it is closed under arbitrary permutation of words.

Example 0.1
$U=\{a a b, a b a, b a a\}$ is commutative, $V=\{a b\}$ is not, as $b a \notin V$.

$$
\psi(w)=\left(|w|_{a_{1}}, \ldots,|w|_{a_{k}}\right),
$$

where $|w|_{a_{i}}$ denotes the number of occurrences of the letter a_{i} in w.

Notation

Let Σ be some finite alphabet.
Languages: subsets of Σ^{*} (the free monoid).
ε : the empty word.
Definition (Commutative language)
A language $L \subseteq \Sigma^{*}$ is called commutative if it is closed under arbitrary permutation of words.

Example 0.1
$U=\{a a b, a b a, b a a\}$ is commutative, $V=\{a b\}$ is not, as $b a \notin V$.
The Parikh map $\psi: \Sigma^{*} \rightarrow \mathbb{N}_{0}^{|\Sigma|}$ is

$$
\psi(w)=\left(|w|_{a_{1}}, \ldots,|w|_{a_{k}}\right),
$$

where $|w|_{a_{i}}$ denotes the number of occurrences of the letter a_{i} in w.

Shuffle Operation

Definition (Shuffle operation)
The shuffle operation, denoted by \amalg, is defined by

$$
u \amalg v:=\left\{\begin{array}{ll}
x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} \mid & \begin{array}{l}
u=x_{1} x_{2} \cdots x_{n}, v=y_{1} y_{2} \cdots y_{n} \\
x_{i}, y_{i} \in \Sigma^{*}, 1 \leq i \leq n, n \geq 1
\end{array}
\end{array}\right\}
$$

for $u, v \in \Sigma^{*}$ and $L_{1} ш L_{2}:=\bigcup_{x \in L_{1}, y \in L_{2}}(x ш y)$ for $L_{1}, L_{2} \subseteq \Sigma^{*}$.
$\{a b\} \amalg\{c d\}=\{a b c d, a c b d, a c d b, c a d b, c d a b, c a b d\}$

Shuffle Operation

Definition (Shuffle operation)
The shuffle operation, denoted by \amalg, is defined by

$$
u Ш v:=\left\{\begin{array}{ll}
x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} \mid & \begin{array}{l}
u=x_{1} x_{2} \cdots x_{n}, v=y_{1} y_{2} \cdots y_{n} \\
x_{i}, y_{i} \in \Sigma^{*}, 1 \leq i \leq n, n \geq 1
\end{array}
\end{array}\right\}
$$

for $u, v \in \Sigma^{*}$ and $L_{1} ш L_{2}:=\bigcup_{x \in L_{1}, y \in L_{2}}(x ш y)$ for $L_{1}, L_{2} \subseteq \Sigma^{*}$.
$\{a b\} ш\{c d\}=\{a b c d, a c b d, a c d b, c a d b, c d a b, c a b d\}$

Iterated Shuffle

1. The Iterated Shuffle is $L^{Ш, *}=\bigcup_{i \geq 0} L^{i, \amalg}$ where $L^{0, ш}=\{\varepsilon\}$ and $L^{i+1, ш}=L^{i, ш} ш L$.
2. The regular languages are not closed under iterated shuffle in general.
3. Example: $\{a b, b a\}{ }^{4, *}=$ \{words with equal number of a 's and b's\}.

For what languages is the iterated shuffle regularlity-preserving?

In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

Here, we investigate this question for the subclass of commutative
regular languages.

Iterated Shuffle

1. The Iterated Shuffle is $L^{\amalg, *}=\bigcup_{i \geq 0} L^{i, \omega}$ where $L^{0, ш}=\{\varepsilon\}$ and $L^{i+1, ш}=L^{i, \omega} ш L$.
2. The regular languages are not closed under iterated shuffle in general.
3. Example: $\{a b, b a\}{ }^{\amalg, *}=\{$ words with equal number of $a ' s$ and $b ' s\}$ For what languages is the iterated shuffle regularlity-preserving?

In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

Here, we investigate this question for the subclass of commutative regular languages.

Iterated Shuffle

1. The Iterated Shuffle is $L^{\amalg, *}=\bigcup_{i \geq 0} L^{i, \omega}$ where $L^{0, ш}=\{\varepsilon\}$ and $L^{i+1, ш}=L^{i, ш} ш L$.
2. The regular languages are not closed under iterated shuffle in general.
3. Example: $\{a b, b a\}^{\amalg, *}=\{$ words with equal number of a 's and $b ' s\}$.

For what languages is the iterated shuffle regularlity-preserving?

In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

Here, we investigate this question for the subclass of commutative regular languages.

Iterated Shuffle

1. The Iterated Shuffle is $L^{Ш, *}=\bigcup_{i \geq 0} L^{i, ш}$ where $L^{0, ш}=\{\varepsilon\}$ and $L^{i+1, ш}=L^{i, ш} ш L$.
2. The regular languages are not closed under iterated shuffle in general.
3. Example: $\{a b, b a\}^{\omega, *}=\{$ words with equal number of a 's and b 's $\}$.

For what languages is the iterated shuffle regularlity-preserving?
In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

Here, we investigate this question for the subclass of commutative regular languages.

Commutative Regular Languages

We will use a characterization of commutative regular languages by boolean operations. Set

1. $F(a, r, n)=\left\{u \in \Sigma^{*}:|u|_{a} \equiv r(\bmod n)\right\}$,
2. $F(a, t)=\left\{u \in \Sigma^{+}:|u|_{a} \geq t\right\}$.

Commutative Regular Languages

We will use a characterization of commutative regular languages by boolean operations.
Set

1. $F(a, r, n)=\left\{u \in \Sigma^{*}:|u|_{a} \equiv r(\bmod n)\right\}$,
2. $F(a, t)=\left\{u \in \Sigma^{+}:|u|_{a} \geq t\right\}$.

Let Σ be a non-empty alphabet, $a \in \Sigma$ and $\Gamma \subseteq \Sigma$.

1. $F(a, 0,1)=\Sigma^{*}$.
2. $F(a, 0,2) \cap F(a, 3,4)=\emptyset$.
3. $F(a, 1)=\Sigma^{*} a \Sigma^{*}$.
4. $\Gamma^{*}=\Sigma^{*} \backslash\left(\bigcup_{b \in \Sigma \backslash \Gamma} F(b, 1)\right)$.

Commutative Regular Languages

Theorem (Jean-Eric Pin, 1997)
The class of commutative regular languages is the boolean algebra generated by languages of the from $F(a, t), F(a, r, n)$, where $t \geq 0$, $0 \leq r<n$ and $a \in \Sigma$.

Definition
A diagonal periodic language over $\Gamma \subseteq \Sigma$ is a language of the form

where $k_{a} \geq 0$ and $p_{a}>0$ for $a \in \Gamma$ when $\Gamma \neq \emptyset$, or the language $\{\varepsilon\}$
Proposition
The diagonal periodic languages are regular and commutative.

Commutative Regular Languages

Theorem (Jean-Eric Pin, 1997)
The class of commutative regular languages is the boolean algebra generated by languages of the from $F(a, t), F(a, r, n)$, where $t \geq 0$, $0 \leq r<n$ and $a \in \Sigma$.

Definition
A diagonal periodic language over $\Gamma \subseteq \Sigma$ is a language of the form

$$
\bigcup_{a \in \Gamma} a^{k_{a}}\left(a^{p_{a}}\right)^{*},
$$

where $k_{a} \geq 0$ and $p_{a}>0$ for $a \in \Gamma$ when $\Gamma \neq \emptyset$, or the language $\{\varepsilon\}$.
Proposition
The diagonal periodic languages are regular and commutative.

Commutative Regular Languages

Proposition

The iterated shuffle of a diagonal periodic language $L \subseteq \Sigma^{*}$ over $\Gamma \subseteq \Sigma^{*}$ is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

Commutative Regular Languages

Proposition

The iterated shuffle of a diagonal periodic language $L \subseteq \Sigma^{*}$ over $\Gamma \subseteq \Sigma^{*}$ is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.
Let $L=\bigsqcup_{a \in \Gamma} a^{k_{a}}\left(a^{p_{a}}\right)^{*}$ with $k_{a} \geq 0, p_{a}>0$.

Set $N=\operatorname{Icm}\left(\left(p_{a}\right)_{a \in \Gamma}\right)$
We have $m \cdot k_{a}+r_{a} \cdot p_{a}=(m-t N) \cdot k_{a}+\left(r_{a}+t \frac{N}{p_{a}} k_{a}\right) \cdot p_{a}$. Choose
$t \geq 0$ s.t. $1 \leq m-t N \leq N$.
$\Rightarrow \bigcup_{m>0} Ш_{a \in \Gamma} a^{m \cdot k_{a}}\left(a^{P_{a}}\right)^{*}=\bigcup_{i=1}^{N} Ш_{a \in \Gamma} a^{i \cdot k_{a}}\left(a^{P_{a}}\right)^{*}$.

Commutative Regular Languages

Proposition

The iterated shuffle of a diagonal periodic language $L \subseteq \Sigma^{*}$ over $\Gamma \subseteq \Sigma^{*}$ is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

$$
\begin{aligned}
& \text { Let } L=\bigsqcup_{a \in \Gamma} a^{k_{a}}\left(a^{p_{a}}\right)^{*} \text { with } k_{a} \geq 0, p_{a}>0 . \\
\Rightarrow & L^{Ш, *}=\{\varepsilon\} \cup \bigcup_{m>0} Ш_{a \in \Gamma} a^{m \cdot k_{a}}\left(a^{p_{a}}\right)^{*} .
\end{aligned}
$$

Set $N=\operatorname{lcm}\left(\left(p_{a}\right)_{a \in \Gamma}\right)$
We have $m \cdot k_{a}+r_{a} \cdot p_{a}=(m-t N) \cdot k_{a}+\left(r_{a}+t \frac{N}{p_{a}} k_{a}\right) \cdot p_{a}$. Choose $t \geq 0$ s.t. $1 \leq m-t N \leq N$.

Commutative Regular Languages

Proposition

The iterated shuffle of a diagonal periodic language $L \subseteq \Sigma^{*}$ over $\Gamma \subseteq \Sigma^{*}$ is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

$$
\begin{aligned}
& \text { Let } L=\bigcup_{a \in \Gamma} a^{k_{a}}\left(a^{p_{a}}\right)^{*} \text { with } k_{a} \geq 0, p_{a}>0 . \\
\Rightarrow & L^{ш, *}=\{\varepsilon\} \cup \bigcup_{m>0} Ш_{a \in \Gamma} a^{m \cdot k_{a}}\left(a^{p_{a}}\right)^{*} .
\end{aligned}
$$

Set $N=\operatorname{lcm}\left(\left(p_{a}\right)_{a \in \Gamma}\right)$.
We have $m \cdot k_{a}+r_{a} \cdot p_{a}=(m-t N) \cdot k_{a}+\left(r_{a}+t \frac{N}{p_{a}} k_{a}\right) \cdot p_{a}$. Choose $t \geq 0$ s.t. $1 \leq m-t N \leq N$.

Commutative Regular Languages

Proposition

The iterated shuffle of a diagonal periodic language $L \subseteq \Sigma^{*}$ over $\Gamma \subseteq \Sigma^{*}$ is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

$$
\begin{aligned}
& \text { Let } L=\bigcup_{a \in \Gamma} a^{k_{a}}\left(a^{p_{a}}\right)^{*} \text { with } k_{a} \geq 0, p_{a}>0 . \\
\Rightarrow & L^{ш, *}=\{\varepsilon\} \cup \bigcup_{m>0} Ш_{a \in \Gamma a^{m \cdot k_{a}}}\left(a^{p_{a}}\right)^{*} .
\end{aligned}
$$

Set $N=\operatorname{Icm}\left(\left(p_{a}\right)_{a \in \Gamma}\right)$.
We have $m \cdot k_{a}+r_{a} \cdot p_{a}=(m-t N) \cdot k_{a}+\left(r_{a}+t \frac{N}{p_{a}} k_{a}\right) \cdot p_{a}$. Choose $t \geq 0$ s.t. $1 \leq m-t N \leq N$.
$\Rightarrow \bigcup_{m>0} Ш_{a \in \Gamma} a^{m \cdot k_{a}}\left(a^{p_{a}}\right)^{*}=\bigcup_{i=1}^{N} Ш_{a \in \Gamma} a^{i \cdot k_{a}}\left(a^{p_{a}}\right)^{*}$.

Commutative Regular Languages

Proposition

The iterated shuffle of a diagonal periodic language $L \subseteq \Sigma^{*}$ over $\Gamma \subseteq \Sigma^{*}$ is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

$$
\begin{aligned}
& \text { Let } L=\bigcup_{a \in \Gamma} a^{k_{a}}\left(a^{p_{a}}\right)^{*} \text { with } k_{a} \geq 0, p_{a}>0 . \\
\Rightarrow & L^{ш, *}=\{\varepsilon\} \cup \bigcup_{m>0} Ш_{a \in \Gamma} a^{m \cdot k_{a}}\left(a^{p_{a}}\right)^{*} .
\end{aligned}
$$

Set $N=\operatorname{lcm}\left(\left(p_{a}\right)_{a \in \Gamma}\right)$.
We have $m \cdot k_{a}+r_{a} \cdot p_{a}=(m-t N) \cdot k_{a}+\left(r_{a}+t \frac{N}{p_{a}} k_{a}\right) \cdot p_{a}$. Choose $t \geq 0$ s.t. $1 \leq m-t N \leq N$.
$\Rightarrow \bigcup_{m>0} Ш_{a \in \Gamma} a^{m \cdot k_{a}}\left(a^{p_{a}}\right)^{*}=\bigcup_{i=1}^{N} Ш_{a \in \Gamma} a^{i \cdot k_{a}}\left(a^{p_{a}}\right)^{*}$.
So,

$$
L^{\omega, *}=\{\varepsilon\} \cup \bigcup_{i=1}^{N} Ш_{a \in \Gamma} a^{i \cdot k_{a}}\left(a^{p_{\mathrm{a}}}\right)^{*} .
$$

Commutative Regular Languages

Proposition
The positive boolean algebra generated by languages of the form $F(a, k)$, $F(a, k, n), 0 \leq k<n, \Gamma^{+}$and $\Gamma^{*}, \Gamma \subseteq \Sigma$, is precisely the language class of finite unions of the diagonal periodic languages.

Commutative Regular Languages

Proposition

The positive boolean algebra generated by languages of the form $F(a, k)$, $F(a, k, n), 0 \leq k<n, \Gamma^{+}$and $\Gamma^{*}, \Gamma \subseteq \Sigma$, is precisely the language class of finite unions of the diagonal periodic languages.

Theorem
Let $L \subseteq \Sigma^{*}$ be in the positive boolean algebra generated by languages of the form $F(a, k), F(a, k, n), \Gamma^{+}$and Γ^{*} for $\Gamma \subseteq \Sigma$. Then, the iterated shuffle of L is contained in this positive boolean algebra. In particular, the iterated shuffle is regular.

Proof
By the above, $(U \cup V)^{L}$

Commutative Regular Languages

Proposition

The positive boolean algebra generated by languages of the form $F(a, k)$, $F(a, k, n), 0 \leq k<n, \Gamma^{+}$and $\Gamma^{*}, \Gamma \subseteq \Sigma$, is precisely the language class of finite unions of the diagonal periodic languages.

Theorem

Let $L \subseteq \Sigma^{*}$ be in the positive boolean algebra generated by languages of the form $F(a, k), F(a, k, n), \Gamma^{+}$and Γ^{*} for $\Gamma \subseteq \Sigma$. Then, the iterated shuffle of L is contained in this positive boolean algebra. In particular, the iterated shuffle is regular.

Proof.
By the above, $(U \cup V)^{\amalg, *}=U^{\amalg, *} \amalg V^{Ш, *}$ and the fact that shuffle distributes over union.

Finite Commutative Languages

Theorem

Let $L \subseteq \Sigma^{*}$ be a finite language. Then, perm $(L)^{\omega, *}$ is regular if and only if for any $a \in \Sigma$ with $\Sigma^{*} a \Sigma^{*} \cap L \neq \emptyset$ we have $a^{+} \cap L \neq \emptyset$.

Corollary
Let $u \in \Sigma$ and $L \subseteq \Sigma^{*}$ be a finite language. Then,
perm $(u) Ш$ perm $(L)^{\amalg, *}$ is regular if and only if for any $a \in \Sigma$ with $\sum^{*} a \Sigma^{*} \cap L \neq \emptyset$, we have $a^{+} \cap L \neq \emptyset$.

1. The iterated shuffle of $\{a b, b a\} \cup\{c\} Ш\{a, b\}^{*}$ is not regular.
2. The iterated shuffle of $\{a b, b a\} \amalg\{c\}^{*} \cup\{a c\} \amalg\{a, b\}^{*}$ is not regular.
3. The iterated shuffle of
$\{a b, b a\} \cup\{c\} Ш\{a, b\}^{*} \cup$ perm $(a b b) \amalg\{a, b\}^{*}$ is regular.
4. The iterated shuffle of
$\{a b, b a\} \cup\{c\} Ш\{a, b\}^{*} \cup \operatorname{perm}(a b b) \amalg\{a\}^{*} \cup\{b b\}$ is regular.

Finite Commutative Languages

Theorem

Let $L \subseteq \Sigma^{*}$ be a finite language. Then, perm $(L)^{Ш, *}$ is regular if and only if for any $a \in \Sigma$ with $\Sigma^{*} a \Sigma^{*} \cap L \neq \emptyset$ we have $a^{+} \cap L \neq \emptyset$.

Corollary

Let $u \in \Sigma$ and $L \subseteq \Sigma^{*}$ be a finite language. Then, perm (u) Ш perm $(L)^{\Psi, *}$ is regular if and only if for any $a \in \Sigma$ with $\Sigma^{*} a \Sigma^{*} \cap L \neq \emptyset$, we have $a^{+} \cap L \neq \emptyset$.

Finite Commutative Languages

Theorem

Let $L \subseteq \Sigma^{*}$ be a finite language. Then, perm $(L)^{\omega, *}$ is regular if and only if for any $a \in \Sigma$ with $\Sigma^{*} a \Sigma^{*} \cap L \neq \emptyset$ we have $a^{+} \cap L \neq \emptyset$.

Corollary

Let $u \in \Sigma$ and $L \subseteq \Sigma^{*}$ be a finite language. Then, perm (u) Ш perm $(L)^{\Psi, *}$ is regular if and only if for any $a \in \Sigma$ with $\Sigma^{*} a \Sigma^{*} \cap L \neq \emptyset$, we have $a^{+} \cap L \neq \emptyset$.

1. The iterated shuffle of $\{a b, b a\} \cup\{c\} \amalg\{a, b\}^{*}$ is not regular.
2. The iterated shuffle of $\{a b, b a\} \amalg\{c\}^{*} \cup\{a c\} \amalg\{a, b\}^{*}$ is not regular.
3. The iterated shuffle of $\{a b, b a\} \cup\{c\} \amalg\{a, b\}^{*} \cup \operatorname{perm}(a b b) \amalg\{a, b\}^{*}$ is regular.
4. The iterated shuffle of $\{a b, b a\} \cup\{c\} \amalg\{a, b\}^{*} \cup$ perm $(a b b) \amalg\{a\}^{*} \cup\{b b\}$ is regular.

Finite Commutative Languages

Theorem

Let $L \subseteq \Sigma^{*}$ be a finite language. Then, perm $(L)^{Ш, *}$ is regular if and only if for any $a \in \Sigma$ with $\Sigma^{*} a \Sigma^{*} \cap L \neq \emptyset$ we have $a^{+} \cap L \neq \emptyset$.

Images from Vadim Ponomarenko, The Multi-Dimensional Frobenius Problem and Vector GCDs (Talk), https://vadim.sdsu.edu//frob-gcd.pdf

1. W.I.o.g there exists $a \in \sum$ such that $|u|_{a}>0$ implies $u \notin a^{+}$and $|v|_{a}>0$ for at least one $v \in L$.
2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm(L) is regular iff $\psi(L)$ is a finite union of sets of the form

$$
u+\left\{c_{1} u_{1}+\ldots+c_{m} u_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{N}_{0}, u_{1}, \ldots, u_{m} \in A\right\}
$$

for $u \in \mathbb{N}_{0}$ and finite $A \subseteq\left\{c \cdot \psi(a) \mid a \in \Sigma\right.$ and $\left.c \in \mathbb{N}_{0}\right\}(\psi(a)$ are standard basis vectors).
3. With the assumption, we can show that an affine one-dimensional set of the form $u+\mathbb{N}_{0} \cdot c e_{i}$ for some stretched standard basis vector $c e_{i}$ intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any e_{i}, hence (linear algebra) each ray has precisely one intersection with the ray $\mathbb{N}_{0} \cdot e_{i}$.

1. W.I.o.g there exists $a \in \sum$ such that $|u|_{a}>0$ implies $u \notin a^{+}$and $|v|_{a}>0$ for at least one $v \in L$.
2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm(L) is regular iff $\psi(L)$ is a finite union of sets of the form

$$
u+\left\{c_{1} u_{1}+\ldots+c_{m} u_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{N}_{0}, u_{1}, \ldots, u_{m} \in A\right\}
$$

for $u \in \mathbb{N}_{0}$ and finite $A \subseteq\left\{c \cdot \psi(a) \mid a \in \Sigma\right.$ and $\left.c \in \mathbb{N}_{0}\right\}(\psi(a)$ are standard basis vectors).
3. With the assumption, we can show that an affine one-dimensional set of the form $u+\mathbb{N}_{0} \cdot c e_{i}$ for some stretched standard basis vector $c e_{i}$ intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any e_{i}, hence (linear algebra) each ray has precisely one intersection with the ray $\mathbb{N}_{0} \cdot e_{i}$.

1. W.I.o.g there exists $a \in \sum$ such that $|u|_{a}>0$ implies $u \notin a^{+}$and $|v|_{a}>0$ for at least one $v \in L$.
2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm (L) is regular iff $\psi(L)$ is a finite union of sets of the form

$$
u+\left\{c_{1} u_{1}+\ldots+c_{m} u_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{N}_{0}, u_{1}, \ldots, u_{m} \in A\right\}
$$ for $u \in \mathbb{N}_{0}$ and finite $A \subseteq\left\{c \cdot \psi(a) \mid a \in \Sigma\right.$ and $\left.c \in \mathbb{N}_{0}\right\}(\psi(a)$ are standard basis vectors).

With the assumption, we can show that an affine one-dimensional set of the form $u+\mathbb{N}_{0} \cdot c e_{i}$ for some stretched standard basis vector ce_{i} intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any e_{i}, hence (linear algebra) each ray has precisely one intersection with the ray $\mathbb{N}_{0} \cdot e_{i}$

1. W.I.o.g there exists $a \in \sum$ such that $|u|_{a}>0$ implies $u \notin a^{+}$and $|v|_{a}>0$ for at least one $v \in L$.
2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm(L) is regular iff $\psi(L)$ is a finite union of sets of the form

$$
u+\left\{c_{1} u_{1}+\ldots+c_{m} u_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{N}_{0}, u_{1}, \ldots, u_{m} \in A\right\}
$$

for $u \in \mathbb{N}_{0}$ and finite $A \subseteq\left\{c \cdot \psi(a) \mid a \in \Sigma\right.$ and $\left.c \in \mathbb{N}_{0}\right\}$ ($\psi(a)$ are standard basis vectors).
3. With the assumption, we can show that an affine one-dimensional set of the form $u+\mathbb{N}_{0} \cdot c e_{i}$ for some stretched standard basis vector $c e_{i}$ intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any e_{i}, hence (linear algebra) each ray has precisely one intersection with the ray $\mathbb{N}_{0} \cdot e_{i}$.

1. Let $L=\left\{u_{1}, \ldots, u_{n}\right\}$. W.I.o.g. $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ and $u_{i} \in a_{i}^{+}$for $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq L$. Set $m_{i}=\left|u_{i}\right|=\psi\left(u_{i}\right)$ for $i \in\{1, \ldots, k\}$.
2. For $i>k$ write $\psi\left(u_{i}\right)=x_{1} \psi\left(a_{1}\right)+\ldots+x_{k} \psi\left(a_{k}\right)$.

Then, $m_{1} \cdots m_{k} \psi\left(u_{i}\right)=x_{1} \frac{m_{1} \cdots m_{k}}{m_{1}} \psi\left(u_{1}\right)+\ldots+x_{k} \frac{m_{1} \cdots m_{k}}{m_{k}} \psi\left(u_{k}\right)$.
3. So $c_{1} \psi\left(u_{1}\right)+\ldots+c_{n} \psi\left(u_{n}\right)$ equals

4. Hence, $L^{\omega, *}$ equals:

For $i \in\{1, \ldots, k\}$, we have $u_{i} \in a_{i}^{+}$, so $\operatorname{perm}\left(u_{i}^{*}\right)=u_{i}^{*}$.

1. Let $L=\left\{u_{1}, \ldots, u_{n}\right\}$. W.I.o.g. $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ and $u_{i} \in a_{i}^{+}$for $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq L$. Set $m_{i}=\left|u_{i}\right|=\psi\left(u_{i}\right)$ for $i \in\{1, \ldots, k\}$.
2. For $i>k$ write $\psi\left(u_{i}\right)=x_{1} \psi\left(a_{1}\right)+\ldots+x_{k} \psi\left(a_{k}\right)$.

Then, $m_{1} \cdots m_{k} \psi\left(u_{i}\right)=x_{1} \frac{m_{1} \cdots m_{k}}{m_{1}} \psi\left(u_{1}\right)+\ldots+x_{k} \frac{m_{1} \cdots m_{k}}{m_{k}} \psi\left(u_{k}\right)$.
3. So $c_{1} \psi\left(u_{1}\right)+\ldots+c_{n} \psi\left(u_{n}\right)$ equals

$$
\begin{gathered}
\left(c_{1}+x_{a_{1}} \frac{m_{1} \cdots m_{k}}{m_{1}}\right) \psi\left(u_{1}\right)+\ldots+\left(c_{k}+x_{a_{k}} \frac{m_{1} \cdots m_{k}}{m_{k}}\right) \psi\left(u_{k}\right)+\ldots+ \\
c_{i-1} \psi\left(u_{i-1}\right)+\left(c_{i}-m_{1} \cdots m_{k}\right) \psi\left(u_{i}\right)+c_{i+1} \psi\left(u_{i+1}\right)+\ldots+c_{n} \psi\left(u_{n}\right) .
\end{gathered}
$$

4. Hence, $L^{\amalg, *}$ equals:

1. Let $L=\left\{u_{1}, \ldots, u_{n}\right\}$. W.l.o.g. $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ and $u_{i} \in a_{i}^{+}$for $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq L$. Set $m_{i}=\left|u_{i}\right|=\psi\left(u_{i}\right)$ for $i \in\{1, \ldots, k\}$.
2. For $i>k$ write $\psi\left(u_{i}\right)=x_{1} \psi\left(a_{1}\right)+\ldots+x_{k} \psi\left(a_{k}\right)$.

Then, $m_{1} \cdots m_{k} \psi\left(u_{i}\right)=x_{1} \frac{m_{1} \cdots m_{k}}{m_{1}} \psi\left(u_{1}\right)+\ldots+x_{k} \frac{m_{1} \cdots m_{k}}{m_{k}} \psi\left(u_{k}\right)$.
3. So $c_{1} \psi\left(u_{1}\right)+\ldots+c_{n} \psi\left(u_{n}\right)$ equals

$$
\begin{aligned}
& \left(c_{1}+x_{a_{1}} \frac{m_{1} \cdots m_{k}}{m_{1}}\right) \psi\left(u_{1}\right)+\ldots+\left(c_{k}+x_{a_{k}} \frac{m_{1} \cdots m_{k}}{m_{k}}\right) \psi\left(u_{k}\right)+\ldots+ \\
& c_{i-1} \psi\left(u_{i-1}\right)+\left(c_{i}-m_{1} \cdots m_{k}\right) \psi\left(u_{i}\right)+c_{i+1} \psi\left(u_{i+1}\right)+\ldots+c_{n} \psi\left(u_{n}\right) .
\end{aligned}
$$

4. Hence, $L^{Ш, *}$ equals:

$$
\bigcup_{\substack{\left(c_{k+1}, \ldots, c_{n}\right) \\ 0 \leq c_{i}<m_{1} \cdots m_{k}}} \operatorname{perm}\left(u_{1}^{*}\right) Ш \ldots \text {. .Шperm }\left(u_{k}^{*}\right) \amalg \operatorname{perm}\left(u_{k+1}^{c_{k+1}}\right) \amalg \ldots \text {... }
$$

For $i \in\{1, \ldots, k\}$, we have $u_{i} \in a_{i}^{+}$, so perm $\left(u_{i}^{*}\right)=u_{i}^{*}$.

Open Problems

1. Characterize the class of commutative languages whose iterated shuffle is regular in easy terms (for example, as a (positive) boolean algebra).
2. Smaller Step: Do this for the star-free commutative languages (a sufficient condition is in the paper).
3. Computational Complexity to decide regularity of the iterated shuffle of commutative languages. (The given criterion for finite languages is easily seen to be in P).
4. Construct (optimal) automata in case the iterated shuffle is regular.
