# Regularity Conditions for Iterated Shuffle on Commutative Regular Languages

#### Stefan Hoffmann, Universität Trier, Germany

International Conference on Implementation and Application of Automata (CIAA) 2021, July 19 – July 22, 2021 (virtuell) Organizers: Sebastian Maneth, Peter Leupold, Kathryn Lorenz, Martin Vu

July, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Notation

Let  $\Sigma$  be some finite alphabet. Languages: subsets of  $\Sigma^*$  (the free monoid).  $\varepsilon$ : the empty word.

## Definition (Commutative language)

A language  $L \subseteq \Sigma^*$  is called commutative if it is closed under arbitrary permutation of words.

Example 0.1  $U = \{aab, aba, baa\}$  is commutative,  $V = \{ab\}$  is not, as  $ba \notin V$ . The Parikh map  $\psi : \Sigma^* \to \mathbb{N}_0^{|\Sigma|}$  is

$$\psi(w)=(|w|_{a_1},\ldots,|w|_{a_k}),$$

where  $|w|_{a_i}$  denotes the number of occurrences of the letter  $a_i$  in w.

# Notation

Let  $\Sigma$  be some finite alphabet. Languages: subsets of  $\Sigma^*$  (the free monoid).  $\varepsilon$ : the empty word.

## Definition (Commutative language)

A language  $L \subseteq \Sigma^*$  is called commutative if it is closed under arbitrary permutation of words.

Example 0.1  $U = \{aab, aba, baa\}$  is commutative,  $V = \{ab\}$  is not, as  $ba \notin V$ . The Parikh map  $\psi : \Sigma^* \to \mathbb{N}_0^{|\Sigma|}$  is

$$\psi(w)=(|w|_{a_1},\ldots,|w|_{a_k}),$$

where  $|w|_{a_i}$  denotes the number of occurrences of the letter  $a_i$  in w.

# Notation

Let  $\Sigma$  be some finite alphabet. Languages: subsets of  $\Sigma^*$  (the free monoid).  $\varepsilon$ : the empty word.

## Definition (Commutative language)

A language  $L \subseteq \Sigma^*$  is called commutative if it is closed under arbitrary permutation of words.

Example 0.1  $U = \{aab, aba, baa\}$  is commutative,  $V = \{ab\}$  is not, as  $ba \notin V$ . The Parikh map  $\psi : \Sigma^* \to \mathbb{N}_0^{|\Sigma|}$  is

$$\psi(\mathbf{w}) = (|\mathbf{w}|_{a_1}, \ldots, |\mathbf{w}|_{a_k}),$$

where  $|w|_{a_i}$  denotes the number of occurrences of the letter  $a_i$  in w.

# Shuffle Operation



## Definition (Shuffle operation) The shuffle operation, denoted by $\Box$ , is defined by

$$u \sqcup v := \left\{ \begin{array}{ll} x_1 y_1 x_2 y_2 \cdots x_n y_n \mid & u = x_1 x_2 \cdots x_n, v = y_1 y_2 \cdots y_n, \\ x_i, y_i \in \Sigma^*, 1 \le i \le n, n \ge 1 \end{array} \right\},$$

for  $u, v \in \Sigma^*$  and  $L_1 \sqcup L_2 := \bigcup_{x \in L_1, y \in L_2} (x \sqcup y)$  for  $L_1, L_2 \subseteq \Sigma^*$ . {*ab*}  $\sqcup$  {*cd*} = {*abcd*, *acbd*, *acdb*, *cabb*, *cabd*}

# Shuffle Operation



#### Definition (Shuffle operation) The shuffle operation, denoted by $\Box$ , is defined by

$$u \sqcup v := \left\{ \begin{array}{ll} x_1 y_1 x_2 y_2 \cdots x_n y_n \mid & u = x_1 x_2 \cdots x_n, v = y_1 y_2 \cdots y_n, \\ x_i, y_i \in \Sigma^*, 1 \le i \le n, n \ge 1 \end{array} \right\},$$

for  $u, v \in \Sigma^*$  and  $L_1 \sqcup L_2 := \bigcup_{x \in L_1, y \in L_2} (x \sqcup y)$  for  $L_1, L_2 \subseteq \Sigma^*$ .  $\{ab\} \sqcup \{cd\} = \{abcd, acbd, acdb, cadb, cabd, cabd\}$ 

- 1. The Iterated Shuffle is  $L^{\sqcup,*} = \bigcup_{i \ge 0} L^{i,\sqcup}$  where  $L^{0,\sqcup} = \{\varepsilon\}$  and  $L^{i+1,\sqcup} = L^{i,\sqcup} \sqcup L$ .
- 2. The regular languages are not closed under iterated shuffle in general.
- **3.** Example:  $\{ab, ba\}^{\sqcup,*} = \{$ words with equal number of *a*'s and *b*'s $\}$ .

For what languages is the iterated shuffle regularlity-preserving?

In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

- 1. The Iterated Shuffle is  $L^{\sqcup,*} = \bigcup_{i \ge 0} L^{i,\sqcup}$  where  $L^{0,\sqcup} = \{\varepsilon\}$  and  $L^{i+1,\sqcup} = L^{i,\sqcup} \sqcup L$ .
- 2. The regular languages are not closed under iterated shuffle in general.
- **3.** Example:  $\{ab, ba\}^{\sqcup,*} = \{$ words with equal number of *a*'s and *b*'s $\}$ .

For what languages is the iterated shuffle regularlity-preserving?

In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

- 1. The Iterated Shuffle is  $L^{\sqcup,*} = \bigcup_{i \ge 0} L^{i,\sqcup}$  where  $L^{0,\sqcup} = \{\varepsilon\}$  and  $L^{i+1,\sqcup} = L^{i,\sqcup} \sqcup L$ .
- 2. The regular languages are not closed under iterated shuffle in general.
- 3. Example:  $\{ab, ba\}^{\sqcup,*} = \{$ words with equal number of *a*'s and *b*'s $\}$ .

For what languages is the iterated shuffle regularlity-preserving?

In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

- 1. The Iterated Shuffle is  $L^{\sqcup,*} = \bigcup_{i \ge 0} L^{i,\sqcup}$  where  $L^{0,\sqcup} = \{\varepsilon\}$  and  $L^{i+1,\sqcup} = L^{i,\sqcup} \sqcup L$ .
- 2. The regular languages are not closed under iterated shuffle in general.
- 3. Example:  $\{ab, ba\}^{\sqcup,*} = \{\text{words with equal number of } a's \text{ and } b's\}.$

For what languages is the iterated shuffle regularlity-preserving?

In my previous talk (Monday) I addressed this issue and mentioned that for group languages, this holds true (actually, more general, for polynomials of group languages).

We will use a characterization of commutative regular languages by boolean operations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. 
$$F(a, r, n) = \{u \in \Sigma^* : |u|_a \equiv r \pmod{n}\},\$$

2. 
$$F(a, t) = \{u \in \Sigma^+ : |u|_a \ge t\}.$$

Let  $\Sigma$  be a non-empty alphabet,  $a \in \Sigma$  and  $\Gamma \subseteq \Sigma$ .

1. 
$$F(a, 0, 1) = \Sigma^*$$
.  
2.  $F(a, 0, 2) \cap F(a, 3, 4) = \emptyset$   
3.  $F(a, 1) = \Sigma^* a \Sigma^*$ .

4. 
$$\Gamma^* = \Sigma^* \setminus \left( \bigcup_{b \in \Sigma \setminus \Gamma} F(b, 1) \right).$$

We will use a characterization of commutative regular languages by boolean operations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. 
$$F(a, r, n) = \{u \in \Sigma^* : |u|_a \equiv r \pmod{n}\},\$$

2. 
$$F(a,t) = \{u \in \Sigma^+ : |u|_a \ge t\}.$$

Let  $\Sigma$  be a non-empty alphabet,  $a \in \Sigma$  and  $\Gamma \subseteq \Sigma$ .

1. 
$$F(a,0,1) = \Sigma^*$$
.  
2.  $F(a,0,2) \cap F(a,3,4) = \emptyset$ .  
3.  $F(a,1) = \Sigma^* a \Sigma^*$ .  
4.  $\Gamma^* = \Sigma^* \setminus \left( \bigcup_{b \in \Sigma \setminus \Gamma} F(b,1) \right)$ 

## Theorem (Jean-Eric Pin, 1997)

The class of commutative regular languages is the boolean algebra generated by languages of the from F(a, t), F(a, r, n), where  $t \ge 0$ ,  $0 \le r < n$  and  $a \in \Sigma$ .

Definition A diagonal periodic language over  $\Gamma \subseteq \Sigma$  is a language of the form

Ш а<sup>k</sup>а(а<sup>р</sup>а)\*, а∈Г

where  $k_a \ge 0$  and  $p_a > 0$  for  $a \in \Gamma$  when  $\Gamma \ne \emptyset$ , or the language  $\{\varepsilon\}$ .

#### Proposition

The diagonal periodic languages are regular and commutative.

## Theorem (Jean-Eric Pin, 1997)

The class of commutative regular languages is the boolean algebra generated by languages of the from F(a, t), F(a, r, n), where  $t \ge 0$ ,  $0 \le r < n$  and  $a \in \Sigma$ .

#### Definition

A diagonal periodic language over  $\Gamma\subseteq\Sigma$  is a language of the form

$$\bigsqcup_{a\in\Gamma}a^{k_a}(a^{p_a})^*,$$

where  $k_a \ge 0$  and  $p_a > 0$  for  $a \in \Gamma$  when  $\Gamma \neq \emptyset$ , or the language  $\{\varepsilon\}$ .

#### Proposition

The diagonal periodic languages are regular and commutative.

Proposition

The iterated shuffle of a diagonal periodic language  $L \subseteq \Sigma^*$  over  $\Gamma \subseteq \Sigma^*$  is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

Let 
$$L = \bigsqcup_{a \in \Gamma} a^{k_a} (a^{p_a})^*$$
 with  $k_a \ge 0, p_a > 0.$   

$$\Rightarrow L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{m>0} \coprod_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^*.$$
Set  $N = \operatorname{lcm}((p_a)_{a \in \Gamma}).$   
We have  $m \cdot k_a + r_a \cdot p_a = (m - tN) \cdot k_a + (r_a + t\frac{N}{p_a}k_a) \cdot p_a.$  Choose  $t \ge 0$  s.t.  $1 \le m - tN \le N.$   

$$\Rightarrow \bigcup_{m>0} \coprod_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^* = \bigcup_{i=1}^N \coprod_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$$
So,  
 $L^{\coprod,*} = \{\varepsilon\} \cup \bigcup^N \coprod_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

The iterated shuffle of a diagonal periodic language  $L \subseteq \Sigma^*$  over  $\Gamma \subseteq \Sigma^*$  is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

Let 
$$L = \bigsqcup_{a \in \Gamma} a^{k_a} (a^{p_a})^*$$
 with  $k_a \ge 0, p_a > 0.$   

$$\Rightarrow L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{m>0} \coprod_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^*.$$
Set  $N = \operatorname{lcm}((p_a)_{a \in \Gamma}).$   
We have  $m \cdot k_a + r_a \cdot p_a = (m - tN) \cdot k_a + (r_a + t \frac{N}{p_a} k_a) \cdot p_a.$  Choose  $t \ge 0$  s.t.  $1 \le m - tN \le N.$   

$$\Rightarrow \bigcup_{m>0} \coprod_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^* = \bigcup_{i=1}^N \coprod_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$$
So,  
 $L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{i=1}^N \coprod_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$ 

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへ⊙

Proposition

The iterated shuffle of a diagonal periodic language  $L \subseteq \Sigma^*$  over  $\Gamma \subseteq \Sigma^*$  is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

Let 
$$L = \coprod_{a \in \Gamma} a^{k_a} (a^{p_a})^*$$
 with  $k_a \ge 0, p_a > 0.$   

$$\Rightarrow L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{m>0} \coprod_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^*.$$
Set  $N = \operatorname{lcm}((p_a)_{a \in \Gamma}).$   
We have  $m \cdot k_a + r_a \cdot p_a = (m - tN) \cdot k_a + (r_a + t \frac{N}{p_a} k_a) \cdot p_a.$  Choose  $t \ge 0$  s.t.  $1 \le m - tN \le N.$   

$$\Rightarrow \bigcup_{m>0} \coprod_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^* = \bigcup_{i=1}^N \coprod_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$$
So,  
 $L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{m=1}^N \coprod_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$ 

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Proposition

The iterated shuffle of a diagonal periodic language  $L \subseteq \Sigma^*$  over  $\Gamma \subseteq \Sigma^*$  is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

Let 
$$L = \bigsqcup_{a \in \Gamma} a^{k_a} (a^{p_a})^*$$
 with  $k_a \ge 0, p_a > 0.$   

$$\Rightarrow L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{m>0} \bigsqcup_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^*.$$
Set  $N = \operatorname{lcm}((p_a)_{a \in \Gamma}).$   
We have  $m \cdot k_a + r_a \cdot p_a = (m - tN) \cdot k_a + (r_a + t \frac{N}{p_a} k_a) \cdot p_a.$  Choose  $t \ge 0$  s.t.  $1 \le m - tN \le N.$   

$$\Rightarrow \bigcup_{m>0} \bigsqcup_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^* = \bigcup_{i=1}^N \bigsqcup_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$$
So,  
 $L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{a \in \Gamma} u_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

The iterated shuffle of a diagonal periodic language  $L \subseteq \Sigma^*$  over  $\Gamma \subseteq \Sigma^*$  is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

Let 
$$L = \bigsqcup_{a \in \Gamma} a^{k_a} (a^{p_a})^*$$
 with  $k_a \ge 0, p_a > 0.$   

$$\Rightarrow L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{m>0} \bigsqcup_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^*.$$
Set  $N = \operatorname{lcm}((p_a)_{a \in \Gamma}).$   
We have  $m \cdot k_a + r_a \cdot p_a = (m - tN) \cdot k_a + (r_a + t \frac{N}{p_a} k_a) \cdot p_a.$  Choose  $t \ge 0$  s.t.  $1 \le m - tN \le N.$   

$$\Rightarrow \bigcup_{m>0} \bigsqcup_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^* = \bigcup_{i=1}^N \bigsqcup_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$$
So,  
 $L^{\coprod,*} = \{\varepsilon\} \cup \bigcup_{i=1}^N \bigsqcup_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

The iterated shuffle of a diagonal periodic language  $L \subseteq \Sigma^*$  over  $\Gamma \subseteq \Sigma^*$  is a finite union of diagonal periodic languages. In particular, it is regular.

Proof.

Let 
$$L = \bigsqcup_{a \in \Gamma} a^{k_a} (a^{p_a})^*$$
 with  $k_a \ge 0, p_a > 0$ .  

$$\Rightarrow L^{\sqcup,*} = \{\varepsilon\} \cup \bigcup_{m>0} \bigsqcup_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^*.$$
Set  $N = \operatorname{lcm}((p_a)_{a \in \Gamma}).$   
We have  $m \cdot k_a + r_a \cdot p_a = (m - tN) \cdot k_a + (r_a + t\frac{N}{p_a}k_a) \cdot p_a.$  Choose  $t \ge 0$  s.t.  $1 \le m - tN \le N.$   

$$\Rightarrow \bigcup_{m>0} \bigsqcup_{a \in \Gamma} a^{m \cdot k_a} (a^{p_a})^* = \bigcup_{i=1}^N \bigsqcup_{a \in \Gamma} a^{i \cdot k_a} (a^{p_a})^*.$$
So,  
 $L^{\amalg,*} = \{\varepsilon\} \cup \bigcup_{a \in \Gamma} u^{i \cdot k_a} (a^{p_a})^*.$ 

i=1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Proposition

The positive boolean algebra generated by languages of the form F(a, k), F(a, k, n),  $0 \le k < n$ ,  $\Gamma^+$  and  $\Gamma^*$ ,  $\Gamma \subseteq \Sigma$ , is precisely the language class of finite unions of the diagonal periodic languages.

#### Theorem

Let  $L \subseteq \Sigma^*$  be in the positive boolean algebra generated by languages of the form F(a, k), F(a, k, n),  $\Gamma^+$  and  $\Gamma^*$  for  $\Gamma \subseteq \Sigma$ . Then, the iterated shuffle of L is contained in this positive boolean algebra. In particular, the iterated shuffle is regular.

#### Proof.

By the above,  $(U \cup V)^{\sqcup,*} = U^{\sqcup,*} \sqcup V^{\sqcup,*}$  and the fact that shuffle distributes over union.

## Proposition

The positive boolean algebra generated by languages of the form F(a, k), F(a, k, n),  $0 \le k < n$ ,  $\Gamma^+$  and  $\Gamma^*$ ,  $\Gamma \subseteq \Sigma$ , is precisely the language class of finite unions of the diagonal periodic languages.

#### Theorem

Let  $L \subseteq \Sigma^*$  be in the positive boolean algebra generated by languages of the form F(a, k), F(a, k, n),  $\Gamma^+$  and  $\Gamma^*$  for  $\Gamma \subseteq \Sigma$ . Then, the iterated shuffle of L is contained in this positive boolean algebra. In particular, the iterated shuffle is regular.

#### Proof.

By the above,  $(U \cup V)^{\sqcup,*} = U^{\sqcup,*} \sqcup V^{\sqcup,*}$  and the fact that shuffle distributes over union.

## Proposition

The positive boolean algebra generated by languages of the form F(a, k), F(a, k, n),  $0 \le k < n$ ,  $\Gamma^+$  and  $\Gamma^*$ ,  $\Gamma \subseteq \Sigma$ , is precisely the language class of finite unions of the diagonal periodic languages.

#### Theorem

Let  $L \subseteq \Sigma^*$  be in the positive boolean algebra generated by languages of the form F(a, k), F(a, k, n),  $\Gamma^+$  and  $\Gamma^*$  for  $\Gamma \subseteq \Sigma$ . Then, the iterated shuffle of L is contained in this positive boolean algebra. In particular, the iterated shuffle is regular.

#### Proof.

By the above,  $(U \cup V)^{\sqcup,*} = U^{\sqcup,*} \sqcup V^{\sqcup,*}$  and the fact that shuffle distributes over union.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem Let  $L \subseteq \Sigma^*$  be a finite language. Then, perm $(L)^{\sqcup,*}$  is regular if and only if for any  $a \in \Sigma$  with  $\Sigma^* a \Sigma^* \cap L \neq \emptyset$  we have  $a^+ \cap L \neq \emptyset$ .

### Corollary

Let  $u \in \Sigma$  and  $L \subseteq \Sigma^*$  be a finite language. Then, perm $(u) \sqcup \operatorname{perm}(L)^{\sqcup,*}$  is regular if and only if for any  $a \in \Sigma$  with  $\Sigma^* a \Sigma^* \cap L \neq \emptyset$ , we have  $a^+ \cap L \neq \emptyset$ .

- 1. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^*$  is not regular.
- 2. The iterated shuffle of  $\{ab, ba\} \sqcup \{c\}^* \cup \{ac\} \sqcup \{a, b\}^*$  is not regular.
- 3. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^* \cup \text{perm}(abb) \sqcup \{a, b\}^*$  is regular.
- 4. The iterated shuffle of {*ab*, *ba*} ∪ {*c*} ⊔ {*a*, *b*}\* ∪ perm(*abb*) ⊔ {*a*}\* ∪ {*bb*} is regular.

Theorem Let  $L \subseteq \Sigma^*$  be a finite language. Then,  $\operatorname{perm}(L)^{\sqcup,*}$  is regular if and only if for any  $a \in \Sigma$  with  $\Sigma^* a \Sigma^* \cap L \neq \emptyset$  we have  $a^+ \cap L \neq \emptyset$ .

#### Corollary

Let  $u \in \Sigma$  and  $L \subseteq \Sigma^*$  be a finite language. Then, perm $(u) \sqcup perm(L)^{\sqcup,*}$  is regular if and only if for any  $a \in \Sigma$  with  $\Sigma^* a \Sigma^* \cap L \neq \emptyset$ , we have  $a^+ \cap L \neq \emptyset$ .

- 1. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^*$  is not regular.
- 2. The iterated shuffle of  $\{ab, ba\} \sqcup \{c\}^* \cup \{ac\} \sqcup \{a, b\}^*$  is not regular.
- 3. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^* \cup \text{perm}(abb) \sqcup \{a, b\}^*$  is regular.
- 4. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^* \cup \text{perm}(abb) \sqcup \{a\}^* \cup \{bb\}$  is regular.

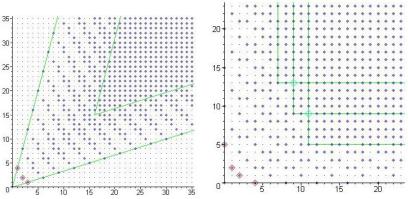
Theorem Let  $L \subseteq \Sigma^*$  be a finite language. Then, perm $(L)^{\sqcup,*}$  is regular if and only if for any  $a \in \Sigma$  with  $\Sigma^* a \Sigma^* \cap L \neq \emptyset$  we have  $a^+ \cap L \neq \emptyset$ .

#### Corollary

Let  $u \in \Sigma$  and  $L \subseteq \Sigma^*$  be a finite language. Then, perm $(u) \sqcup \operatorname{perm}(L)^{\sqcup,*}$  is regular if and only if for any  $a \in \Sigma$  with  $\Sigma^* a \Sigma^* \cap L \neq \emptyset$ , we have  $a^+ \cap L \neq \emptyset$ .

- 1. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^*$  is not regular.
- 2. The iterated shuffle of  $\{ab, ba\} \sqcup \{c\}^* \cup \{ac\} \sqcup \{a, b\}^*$  is not regular.
- 3. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^* \cup \text{perm}(abb) \sqcup \{a, b\}^*$  is regular.
- 4. The iterated shuffle of  $\{ab, ba\} \cup \{c\} \sqcup \{a, b\}^* \cup \text{perm}(abb) \sqcup \{a\}^* \cup \{bb\}$  is regular.

Theorem Let  $L \subseteq \Sigma^*$  be a finite language. Then,  $\operatorname{perm}(L)^{\sqcup,*}$  is regular if and only if for any  $a \in \Sigma$  with  $\Sigma^* a \Sigma^* \cap L \neq \emptyset$  we have  $a^+ \cap L \neq \emptyset$ .



Images from Vadim Ponomarenko, The Multi-Dimensional Frobenius Problem and Vector GCDs (Talk), https://vadim.sdsu.edu//frob-gcd.pdf

・ロト・日本・日本・日本・日本・ション

# 1. W.l.o.g there exists $a \in \Sigma$ such that $|u|_a > 0$ implies $u \notin a^+$ and $|v|_a > 0$ for at least one $v \in L$ .

2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm(L) is regular iff  $\psi(L)$  is a finite union of sets of the form

 $u + \{c_1u_1 + \ldots + c_mu_m \mid c_1, \ldots, c_m \in \mathbb{N}_0, u_1, \ldots, u_m \in A\}$ 

for  $u \in \mathbb{N}_0$  and finite  $A \subseteq \{c \cdot \psi(a) \mid a \in \Sigma \text{ and } c \in \mathbb{N}_0\}$   $(\psi(a) \text{ are standard basis vectors}).$ 

3. With the assumption, we can show that an affine one-dimensional set of the form  $u + \mathbb{N}_0 \cdot ce_i$  for some stretched standard basis vector  $ce_i$  intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any  $e_i$ , hence (linear algebra) each ray has precisely one intersection with the ray  $\mathbb{N}_0 \cdot e_i$ .

# 1. W.l.o.g there exists $a \in \Sigma$ such that $|u|_a > 0$ implies $u \notin a^+$ and $|v|_a > 0$ for at least one $v \in L$ .

2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm(L) is regular iff  $\psi(L)$  is a finite union of sets of the form

 $u + \{c_1u_1 + \ldots + c_mu_m \mid c_1, \ldots, c_m \in \mathbb{N}_0, u_1, \ldots, u_m \in A\}$ 

for  $u \in \mathbb{N}_0$  and finite  $A \subseteq \{c \cdot \psi(a) \mid a \in \Sigma \text{ and } c \in \mathbb{N}_0\}$   $(\psi(a) \text{ are standard basis vectors}).$ 

3. With the assumption, we can show that an affine one-dimensional set of the form  $u + \mathbb{N}_0 \cdot ce_i$  for some stretched standard basis vector  $ce_i$  intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any  $e_i$ , hence (linear algebra) each ray has precisely one intersection with the ray  $\mathbb{N}_0 \cdot e_i$ .

- 1. W.l.o.g there exists  $a \in \Sigma$  such that  $|u|_a > 0$  implies  $u \notin a^+$  and  $|v|_a > 0$  for at least one  $v \in L$ .
- 2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm(L) is regular iff  $\psi(L)$  is a finite union of sets of the form

$$u + \{c_1u_1 + \ldots + c_mu_m \mid c_1, \ldots, c_m \in \mathbb{N}_0, u_1, \ldots, u_m \in A\}$$

for  $u \in \mathbb{N}_0$  and finite  $A \subseteq \{c \cdot \psi(a) \mid a \in \Sigma \text{ and } c \in \mathbb{N}_0\}$  ( $\psi(a)$  are standard basis vectors).

3. With the assumption, we can show that an affine one-dimensional set of the form  $u + \mathbb{N}_0 \cdot ce_i$  for some stretched standard basis vector  $ce_i$  intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any  $e_i$ , hence (linear algebra) each ray has precisely one intersection with the ray  $\mathbb{N}_0 \cdot e_i$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. W.l.o.g there exists  $a \in \Sigma$  such that  $|u|_a > 0$  implies  $u \notin a^+$  and  $|v|_a > 0$  for at least one  $v \in L$ .
- 2. (Ehrenfeucht, Haussler, Rozenberg 1983) perm(L) is regular iff  $\psi(L)$  is a finite union of sets of the form

$$u + \{c_1u_1 + \ldots + c_mu_m \mid c_1, \ldots, c_m \in \mathbb{N}_0, u_1, \ldots, u_m \in A\}$$

for  $u \in \mathbb{N}_0$  and finite  $A \subseteq \{c \cdot \psi(a) \mid a \in \Sigma \text{ and } c \in \mathbb{N}_0\}$  ( $\psi(a)$  are standard basis vectors).

3. With the assumption, we can show that an affine one-dimensional set of the form  $u + \mathbb{N}_0 \cdot ce_i$  for some stretched standard basis vector  $ce_i$  intersects with finitely many (slanted and shifted) rays infinitely often. However, by assumption these rays are not parallel to any  $e_i$ , hence (linear algebra) each ray has precisely one intersection with the ray  $\mathbb{N}_0 \cdot e_i$ .

1. Let  $L = \{u_1, ..., u_n\}$ . W.I.o.g.  $\Sigma = \{a_1, ..., a_k\}$  and  $u_i \in a_i^+$  for  $\{u_1, ..., u_k\} \subseteq L$ . Set  $m_i = |u_i| = \psi(u_i)$  for  $i \in \{1, ..., k\}$ .

2. For i > k write  $\psi(u_i) = x_1 \psi(a_1) + \ldots + x_k \psi(a_k)$ . Then,  $m_1 \cdots m_k \psi(u_i) = x_1 \frac{m_1 \cdots m_k}{m_1} \psi(u_1) + \ldots + x_k \frac{m_1 \cdots m_k}{m_k} \psi(u_k)$ .

3. So  $c_1\psi(u_1) + \ldots + c_n\psi(u_n)$  equals

$$\left(c_1+x_{a_1}\frac{m_1\cdots m_k}{m_1}\right)\psi(u_1)+\ldots+\left(c_k+x_{a_k}\frac{m_1\cdots m_k}{m_k}\right)\psi(u_k)+\ldots+c_{i-1}\psi(u_{i-1})+(c_i-m_1\cdots m_k)\psi(u_i)+c_{i+1}\psi(u_{i+1})+\ldots+c_n\psi(u_n).$$

4. Hence,  $L^{\sqcup,*}$  equals:

 $\bigcup_{\substack{(c_{k+1},\ldots,c_n)\\0\leq c_i< m_1\cdots m_k}} \operatorname{perm}(u_1^*)\sqcup\ldots\sqcup\operatorname{perm}(u_k^*)\sqcup\operatorname{perm}(u_{k+1}^{c_{k+1}})\sqcup\ldots\sqcup\operatorname{perm}(u_n^{c_n}).$ 

For 
$$i \in \{1, \ldots, k\}$$
, we have  $u_i \in a_i^+$ , so  $\operatorname{perm}(u_i^*) = u_i^*$ .

1. Let 
$$L = \{u_1, ..., u_n\}$$
. W.I.o.g.  $\Sigma = \{a_1, ..., a_k\}$  and  $u_i \in a_i^+$  for  $\{u_1, ..., u_k\} \subseteq L$ . Set  $m_i = |u_i| = \psi(u_i)$  for  $i \in \{1, ..., k\}$ .

2. For 
$$i > k$$
 write  $\psi(u_i) = x_1 \psi(a_1) + \ldots + x_k \psi(a_k)$ .  
Then,  $m_1 \cdots m_k \psi(u_i) = x_1 \frac{m_1 \cdots m_k}{m_1} \psi(u_1) + \ldots + x_k \frac{m_1 \cdots m_k}{m_k} \psi(u_k)$ .

3. So  $c_1\psi(u_1) + \ldots + c_n\psi(u_n)$  equals

$$\left(c_1+x_{a_1}\frac{m_1\cdots m_k}{m_1}\right)\psi(u_1)+\ldots+\left(c_k+x_{a_k}\frac{m_1\cdots m_k}{m_k}\right)\psi(u_k)+\ldots+c_{i-1}\psi(u_{i-1})+(c_i-m_1\cdots m_k)\psi(u_i)+c_{i+1}\psi(u_{i+1})+\ldots+c_n\psi(u_n).$$

4. Hence,  $L^{\sqcup,*}$  equals:

 $\bigcup_{\substack{(c_{k+1},\ldots,c_n)\\0\leq c_i< m_1\cdots m_k}} \mathsf{perm}(u_1^*)\sqcup\ldots\sqcup\mathsf{perm}(u_k^*)\sqcup\mathsf{perm}(u_{k+1}^{c_{k+1}})\sqcup\ldots\sqcup\mathsf{perm}(u_n^{c_n}).$ 

For 
$$i \in \{1, \ldots, k\}$$
, we have  $u_i \in a_i^+$ , so  $\operatorname{perm}(u_i^*) = u_i^*$ .

1. Let 
$$L = \{u_1, ..., u_n\}$$
. W.I.o.g.  $\Sigma = \{a_1, ..., a_k\}$  and  $u_i \in a_i^+$  for  $\{u_1, ..., u_k\} \subseteq L$ . Set  $m_i = |u_i| = \psi(u_i)$  for  $i \in \{1, ..., k\}$ .

2. For 
$$i > k$$
 write  $\psi(u_i) = x_1 \psi(a_1) + \ldots + x_k \psi(a_k)$ .  
Then,  $m_1 \cdots m_k \psi(u_i) = x_1 \frac{m_1 \cdots m_k}{m_1} \psi(u_1) + \ldots + x_k \frac{m_1 \cdots m_k}{m_k} \psi(u_k)$ .

3. So  $c_1\psi(u_1) + \ldots + c_n\psi(u_n)$  equals

$$\left(c_1+x_{a_1}\frac{m_1\cdots m_k}{m_1}\right)\psi(u_1)+\ldots+\left(c_k+x_{a_k}\frac{m_1\cdots m_k}{m_k}\right)\psi(u_k)+\ldots+c_{i-1}\psi(u_{i-1})+(c_i-m_1\cdots m_k)\psi(u_i)+c_{i+1}\psi(u_{i+1})+\ldots+c_n\psi(u_n).$$

4. Hence,  $L^{\sqcup,*}$  equals:

$$\bigcup_{\substack{(c_{k+1},\ldots,c_n)\\0\leq c_i< m_1\cdots m_k}} \operatorname{perm}(u_1^*)\sqcup\ldots\sqcup\operatorname{perm}(u_k^*)\sqcup\operatorname{perm}(u_{k+1}^{c_{k+1}})\sqcup\ldots\sqcup\operatorname{perm}(u_n^{c_n}).$$
  
For  $i \in \{1,\ldots,k\}$ , we have  $u_i \in a_i^+$ , so  $\operatorname{perm}(u_i^*) = u_i^*$ .

# **Open Problems**

- 1. Characterize the class of commutative languages whose iterated shuffle is regular in easy terms (for example, as a (positive) boolean algebra).
- 2. Smaller Step: Do this for the star-free commutative languages (a sufficient condition is in the paper).
- 3. Computational Complexity to decide regularity of the iterated shuffle of commutative languages. (The given criterion for finite languages is easily seen to be in P).
- 4. Construct (optimal) automata in case the iterated shuffle is regular.