
The Schreier-Sims Algorithm – A (very) Naive

Implementation

Stefan Hoffmann

October 2021

1 Introduction

The Schreier-Sims algorithm [3] is based on Schreier’s lemma (see Lemma 1.1)
and provides a convenient data structure to represent a permutation group that
yields (polynomial time) algorithms to compute the order of a given group or
to perform membership queries, i.e., asking if a given permutation is in the per-
mutation group. Additionally, it allows for an easy enumeration of the elements
of the permutation group.

This document accompanies a very naive implementation that only serves
educational purposes and does not use any (necessary for polynomial time)
improvements like reducing the number of generators, see for example [2].

A permutation group on a set Ω is a subgroup of the set of all permutations,
i.e., a bijective mapping, on Ω.

If G is a permutation group, α ∈ Ω and g ∈ G, we write αg (which is a
common notation in permutation group theory) for the image of α under g.

Let G be a group with subgroup H ≤ G. A subset R ⊆ G is called a right
transversal (for H in G) if for every g ∈ G there exists precisely one r ∈ R
such that gr−1 ∈ H. This is equivalent to the fact that R contains precisely one
element from each right coset of H in G.

First, let use state (and prove) Schreier’s lemma.

Lemma 1.1 (Schreier’s lemma). Let G be a group generated by S ⊆ G. Let
H ≤ G be a subgroup and R a right transversal for H in G with 1 ∈ R. For
every g ∈ G denote by g ∈ R the unique element from R with gg−1 ∈ H. Then
H is generated by the set

T = {rs(rs)−1 | r ∈ R, s ∈ S}.

Proof. Clearly T ⊆ H. Let r ∈ R and s ∈ S and set g = rs(rs)−1 ∈ H.
Then g−1 = rss−1r−1 ∈ H, which implies rss−1 = r, as r ∈ R. So g−1 =

r′s−1r′s−1
−1

with r′ = rs ∈ R and we find T−1 ⊆ {rs−1(rs−1)−1 | r ∈ R, s ∈
S}. Conversely, if g = rs−1(rs−1)−1. Then, g−1 = rs−1sr−1 ∈ H, which

implies rs−1s = r. Set r′ = rs−1 ∈ R. So we can write g = r′s(r′s)−1 ∈ T−1.
So, in summary, we have shown T−1 = {rs−1(rs−1)−1 | r ∈ R, s ∈ S}.

1

Now, let h ∈ H. Then h = s1s2 · · · sn with si ∈ S ∪ S−1. We have h =
r1s1s2 · · · sn with r1 = 1 ∈ R. Now, suppose h = u1u2 · · ·ujrjsjsj+1 · · · sn for
j ∈ {1, 2, . . . , n} with rj ∈ R and u1, u2, . . . , uj ∈ T ∪ T−1. Then

h = u1u2 · · ·ujrjsjsj+1 · · · sn
= u1u2 · · ·ujrjsjrjsj

−1rjsjsj+1 · · · sn
= u1u2 · · ·ujuj+1rj+1sj+1 · · · sn

with uj+1 = rjsj
−1rjsj ∈ T ∪ T−1 and rj+1 = rjsj . So, inductively, we have

h = u1u2 · · ·unrn

with ui ∈ T ∪ T−1 and rn ∈ R. Finally, as u1u2 · · ·un ∈ H we can deduce
rn = 1 and the statement is shown.

2 The Schreier-Sims Algorithm

For α ∈ Ω, the point stabilizer (of α in G) is Gα = {g ∈ G | αg = α}.
Suppose Ω = {α1, α2, . . . , αn}. Set G0 = G and

Gi = Gα1 ∩Gα2 ∩ . . . ∩Gαn

for i ∈ {1, 2, . . . , n}. Then Gn = {1}. Such a sequence of subgroups is called a
stabilizer chain (for G).

As h ∈ Gαg iff αhg−1 ∈ Gα, we find:

Gαg = {h ∈ G | αh = αg}. (1)

In fact, Equation (1) implies αh = αg iff h and g are contained in the same right
coset for Gα and so the map g 7→ αg for g ∈ G is a bijection between the orbit
of α and the set of right coset of Gα. This is the statement of the orbit-stabilizer
theorem.

A stabilizer chain together with a right transversals Ri for Gi in Gi−1 is
a convenient way to represent a given permutation group G. By the orbit-
stabilizer theorem, we have |Gi−1 : Gi| = |Ri|. By storing the elements from Ri

in concordance with this correspondence given by Equation (1) and the orbit-
stabilizer theorem, the following computational problems can then be solved.

1. Computing the order of G: By Lagrange’s theorem, we have

|G| =
n∏

i=1

|Gi−1 : Gi| =
n∏

i=1

|Ri|.

2. Membership testing, i.e. given a permutation g on Ω, testing if g ∈ G:
We have g ∈ Gi−1 iff gr−1 ∈ Gi for some r ∈ Ri. Hence g ∈ G iff there
exist r1 ∈ R1, r2 ∈ R2, . . . , rn ∈ Rn such that

gr−1
1 r−1

2 · · · r−1
n = 1.

In total, we have to perform at most n2 such tests here.

2

3. Enumerating the elements of G: By the arguments given for the member-
ship testing algorithm, we have

G = {r1r2 · · · rn | r1 ∈ R1, r2 ∈ R2, . . . , rn ∈ Rn}.

3 Computation of the Stabilizer Chain

Here, we assume the permutation group is given as a list of generators and
we will outline a procedure to compute a stabilizer chain together with a right
transversal as assumed in the description of the algorithm in Section 2.

But first, let us reformulate Schreier’s lemma for point stabilizers with the
help of Equation (1).

Lemma 3.1. Let G be a transitive permutation group on Ω = {α1, α2, . . . , αn}
generated by S ⊆ G. Let α ∈ Ω and choose gi ∈ G, i ∈ {1, 2, . . . , n}, such that
αgi = αi. Then Gα is generated by the set

{gisg−1
j | i, j ∈ {1, 2, . . . , n}, s ∈ S : αs

i = αj}.

Proof. By Equation (1), the elements g1, g2, . . . , gn are a right transversal and,
with the notation from Lemma 1.1 and Equation (1),

gis = gj

for the unique j ∈ {1, 2, . . . , n} with αs
i = αgis = αgj = α.

So, in particular, a point stabilizer has a generating set of size |S||Ω|.
Recall Ω = {α1, α2, . . . , αn} and the definitions of the Gi from Section 2.

Now, given G in terms of the generators S, we can compute a right transversal
for G1 by computing the image of α1 for each generator. Then, we continue this
recursively, but stop as soon as we find an image that was already considered
in the process. Throughout this process, we keep track of an element from G
for each recursive call by multiplying out the generators we selected in each
call, starting with the identity element. Furthermore, as soon as a new point
is discovered, the tracked element along the recursive calls is one element from
the right transversal. In particular, for α1, we put the identity element into
the right transversal. Additionally, we also associate the so computed element
with the point, for example, by storing them both together in a list. This whole
procedure could be made to run into |Ω| + |S||Ω| many steps. In fact, it could
be viewed as a depth-first search on a labelled graph with vertex set Ω and edge
set {(α, s, β) | α, β ∈ Ω, s ∈ S}.

Now, by the above procedure, we can compute a right transversal for G1

and store the image of the point α1 for each element from this transversal.
Then, by applying Lemma 3.1, we can compute a set of generators for G1

with these data.
Furthermore, we can continue this process for G2, considered as a subgroup

of G1 given by generators, and continuing this way for G3, G4 up to G1.

3

Note that in each step, the number of generators increases by n = |Ω| times
the number of generators from the previous step. Hence, in total, this counts
up to nn times the number of generators of G after the n-th step. However, this
could be made to run more efficient by using Jerrum’s filter [2], which runs in
polynomial time and reduces the number of generators to n− 1 in each step.

Furthermore, as desribed in [1], Schreier vectors can be used for storing both
a right transversal and the resulting points from above (which are the orbits of
the points αi for the groups Gi−1). In the implementation presented here, we
do not use Schreier vectors, but associate them by using an array.

4 The Program

I tried to keep the program simple and more or less self-explanatory. It consists
of four classes:

• permutation,

• orbit rep,

• point stabilizer and

• stabilizer chain.

A right transversal is stored together with an orbit (as outlined in Section 3).
More specifically, the variable m rep is a double pointer, which is meant to hold
an array of pointers to permutations, which encompass the right transversal,
and the index in this array represents the point that is the image of another
point (stored in m point) under the stored element of the right transversal. All
indices that correspond to point not in the orbit are set to NULL. This is a naive
way to implement the storage of a right transversal and a corresponding orbit,
see the discussion in [1].

I do not claim that this is an elegant or efficient implementation, and it
also does not follow the object oriented paradigm in full rigor (for example, a
member variable, which is a pointer to heap memory, is public in orbit rep).
I wrote it only for educational purposes.

A sample run with the dihedral group on twelve points.

Please enter the number of points, n = 12

Generators are entered by giving a list of integers, where the

value at position i determines the image of i.

Example, enter ’1 2 0’ for the permutation that maps 0 to 1, 1 to 2

and 2 to 0 on three points.

Note that the points are numbered from 0 to n - 1.

Please enter generator number 1 by a list of 12 integers.

Enter a negative value if you do not want to input further generators.

Input: 1 2 3 4 5 6 7 8 9 10 11 0

4

Please enter generator number 2 by a list of 12 integers.

Enter a negative value if you do not want to input further generators.

Input: 0 11 10 9 8 7 6 5 4 3 2 1

Please enter generator number 3 by a list of 12 integers.

Enter a negative value if you do not want to input further generators.

Input: -1

Options:

(1) Compute order of the group.

(2) Enumerate the elements.

(3) Do a membership query.

(4) Exit.

1

Order of group: 24

Options:

(1) Compute order of the group.

(2) Enumerate the elements.

(3) Do a membership query.

(4) Exit.

2

Enumerate group elements:

1: 0 1 2 3 4 5 6 7 8 9 10 11

2: 0 11 10 9 8 7 6 5 4 3 2 1

3: 11 0 1 2 3 4 5 6 7 8 9 10

4: 1 0 11 10 9 8 7 6 5 4 3 2

5: 10 11 0 1 2 3 4 5 6 7 8 9

6: 2 1 0 11 10 9 8 7 6 5 4 3

7: 9 10 11 0 1 2 3 4 5 6 7 8

8: 3 2 1 0 11 10 9 8 7 6 5 4

9: 8 9 10 11 0 1 2 3 4 5 6 7

10: 4 3 2 1 0 11 10 9 8 7 6 5

11: 7 8 9 10 11 0 1 2 3 4 5 6

12: 5 4 3 2 1 0 11 10 9 8 7 6

13: 6 7 8 9 10 11 0 1 2 3 4 5

14: 6 5 4 3 2 1 0 11 10 9 8 7

15: 5 6 7 8 9 10 11 0 1 2 3 4

16: 7 6 5 4 3 2 1 0 11 10 9 8

17: 4 5 6 7 8 9 10 11 0 1 2 3

18: 8 7 6 5 4 3 2 1 0 11 10 9

19: 3 4 5 6 7 8 9 10 11 0 1 2

20: 9 8 7 6 5 4 3 2 1 0 11 10

21: 2 3 4 5 6 7 8 9 10 11 0 1

22: 10 9 8 7 6 5 4 3 2 1 0 11

5

23: 1 2 3 4 5 6 7 8 9 10 11 0

24: 11 10 9 8 7 6 5 4 3 2 1 0

Options:

(1) Compute order of the group.

(2) Enumerate the elements.

(3) Do a membership query.

(4) Exit.

3

Enter permutation on 12 points: 1 0 2 3 4 5 6 7 8 9 10 11

Result of membership query: 0

References

[1] Alexander Hulpke. Notes on Computational Group Theory. https://www.
math.colostate.edu/~hulpke/CGT/cgtnotes.pdf, 2010. Lecture Notes.

[2] Mark Jerrum. A compact representation for permutation groups. In 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982, pages 126–133. IEEE Computer Society, 1982.

[3] Charles Coffin Sims. Computational methods in the study of permutation
groups. In JOHN LEECH, editor, Computational Problems in Abstract Al-
gebra, pages 169–183. Pergamon, Oxford, 1970. Proceedings of a Conference
Held at Oxford Under the Auspices of the Science Research Council Atlas
Computer Laboratory, 29th August to 2nd September 1967.

6

