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1 Introduction

Welcome to the Automata Zoo! Here, I collect different types of automata,
provide characterizations and pointers to their natural habitats, i.e., literature.

The goal is to give, for each type of automata, a short overview, supply
examples and some characterizations.

The selection is subjective, and encompasses mostly types that I encountered
during my research, or that I simply wanted to write about.

2 Notation

I assume some familiarity with basic set theory, algebra (I use terms as, for
example, semigroups, monoid, groups, homomorphisms and kernels) and also
automata theory, for example as contained in [8]. I assume the reader under-
stands my drawings of automata, and what I mean when I say certain patterns
(often only given graphically) are forbidden in an automaton. So, the purpose
the present section is to fix notations, but not to give an introduction to the
mentioned concepts themselves.

A semi-automaton is a triple A = (Q,Σ, δ) where Q is the finite state set, Σ
the input alphabet and δ ⊆ Q×Σ×Q the transition relation. An automaton is a
semi-automaton together with a designated start state and a set of final states,
formally a quintuple A = (Q,Σ, δ, s0, F ) where (Q,Σ, δ) is a semi-automaton
and s0 ∈ Q is the start (or initial) state and F ⊆ Q is the set of final state.

We define a relation δ̂ ⊆ Q × Σ∗ × Q to be the smallest relation such that
(q, ε, q′) ∈ δ̂ and (q, u, q′) ∈ δ̂ for u = u1u2 · · ·un with ui ∈ Σ if there exist
q0, q1, . . . , qn ∈ Q with q0 = q, qn = q′ and (qi−1, ui, qi) ∈ δ for i ∈ {1, 2, . . . , n}.

We have δ ⊆ δ̂ and this extension of δ will also be denoted by δ in the
following. In fact, by associating every letter a ∈ Σ with the relation {(q, q′) |
(q, a, q′) ∈ δ} we have a map from Σ to the set of all binary homogeneous
relations over Q and this extension results by the application of the universal
property of the free monoid Σ∗ to this map.

With an automaton A, we associated the language accepted (or recognized)
by A as L(A) = {u ∈ Σ∗ | ∃q ∈ F : (q0, u, q) ∈ δ}, i.e., the set of labels of
paths from the start state to a final state. If the context is clear, we also call
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semi-automata simply automata. Also notions defined for semi-automata are
also valid for automata.

An automaton (or semi-automaton) A is

deterministic if for every q ∈ Q and a ∈ Σ there exists at most one q′ ∈ Q
such that (q, a, q′) ∈ δ,

complete if for every q ∈ Q and a ∈ Σ there exists at least one q′ ∈ Q such
that (q, a, q′) ∈ δ.

For a deterministic semi-automaton, we identify δ with a (partial) function
δ : Q × Σ → Q, and its extension (also denoted by δ) with a partial function
from Q× Σ∗ to Q.

For a deterministic and complete A and u ∈ Σ∗, let fu : Q → Q be the
function given by fu(q) = δ(q, u). With every deterministic and complete semi-
automaton A, we associate the

transformation semigroup T SA = {fu | u ∈ Σ+},

transformation monoid T MA = {fu | u ∈ Σ∗},

with function composition as the semigroup (monoid) operation.
Note that every word from Σ+ (or Σ∗) corresponds to an element of the

transformation semigroup (or monoid). We will make use of this identification
of words with transformation of states for a given automaton without further
mentioning it.

For more information on automata, see [8].
For a given setX, by TX we denote the transformation monoid on X, i.e., the

set of all mappings X → X with function composition as operation. Sometimes,
we also call TX the transformation semigroup on X. Transformation semigroups
(monoids) on a set of states Q of an automaton are subsemigroups (submonoids)
of TQ.

Note that automata, as defined here, are always finite.

3 Green’s Relations

Semigroups (or monoids) enter into automata theory most obviously by the
transformation semigroup (or monoid) of a given semi-automaton. Hence, it
is natural to investigate automata by investigating their transformation semi-
groups (and in fact, as we can associate a syntactic monoid to every language,
semigroup notions enter into language theory as well, in particular the beautiful
Eilenberg-Schützenberger [3] correspondence between pseudovarieties of semi-
groups and varieties of languages is worth to mention here; see [13] for more
information on that).

Green’s relations [4] are a well-known notion from semigroup theory. Later
we will present various classes of automata defined with the help of these re-
lations in the transformation semigroup. Here, we will only introduce these
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relations and state some properties that are of relevance to us, in particular
their characterization in the semigroup of all transformations TX on a set. For
more information, see [2].

Let S be a semigroups. If S contains an identity element, we set S1 = S,
otherwise let S1 = S ∪ {1} with 1 /∈ S and 1x = x1 = x for all x ∈ S, i.e, the
semigroup adjoined with an identity element. Now, letd s, t ∈ S. We set:

• sL t if and only if S1s = S1t,

• sR t if and only if sS1 = tS1,

• sJ t if and only if S1sS1 = S1tS1,

• sD t if and only if there exists r ∈ S such that sL r and rR t,

• sH t if and only if sL t and sR t.

It is obvious that these are equivalence relations, and furthermore that L is
a right-congruence and R is a left-congruence. Together with the next result,
Theorem 3.1, we get the inclusion relations shown in Figure 1.

Theorem 3.1. Let S be a semigroup and s, t ∈ S. If sD t, then sJ t.

Proof. By assumption there exists r such that sL r and rR t. Hence, we find
x, y ∈ S1 such that xs = r and ry = t. So xsy = t, which implies t ∈ S1sS1.
Similary, we can show s ∈ S1tS1, which yields sJ t.

J

D

L R

H

Figure 1: Hasse diagram for the inclusion relations between Green’s relations
on an arbitrary semigroup.

We will visualize Green’s relations for a given semigroup by drawing a so
called eggbox diagram [2]. In such a diagram, each D-class is represented by a
box, an each such box is subdivided into columns and rows. Each row repre-
sented an R-class, and each column represents an L-class. The elements are
arranged such that those elements that are contained in the same column and
the same row constitute a single H-class. Furthermore, idempotents are marked
by an asterix. See Figure 2 for an example.
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∗111 ∗222 ∗333

∗123 231
312 132
321 213

∗122 ∗133 233
211 311 322
212 313 ∗323
∗121 131 232
221 331 332
112 ∗113 ∗223

Figure 2: The eggbox diagram for T{1,2,3} encompassing three D-classes. A
transformation on {1, 2, 3} is written as a string, where the appearance of num-
ber j at position i means the transformation maps i to j, for example 111 is the
mapping that maps everything to 1.

As we are concerned with finite state automata here, the following result,
stating that the D and J equivalences coincide for finite semigroups, is of par-
ticular interest to us.

Theorem 3.2. If S is a finite semigroup, then for s, t ∈ S we have sD t if and
only if sJ t.

Proof. Let s, t ∈ S. By Theorem 3.1, we only have to show that sJ t implies
sD t. Suppose x, x′, y, y′ ∈ S1 such that xsy = t and x′ty′ = s. Set r =
x′t. Then ry′ = s. By finiteness, there exist i, j ≥ 0 and p, q > 0 such that
r(y′y)i+p = r(y′y)i and (xx′)j+qt = (xx′)jt. Multiplying the first equation
by (x′x)i from the left gives r(y′y)p = r, or sy′(yy′)p−1y = r. Hence sR r.
Similarly, we find x(xx′)q−1r = (xx′)qt = t. So rL t.

The following result about the H-classes is note-worthy.

Theorem 3.3 (Green’s theorem). Let H be an H-class of a semigroup S. Then,
either H2 ∩H = ∅ or H2 = H and H is a subsemigroup that forms a group1.

Let X be a set. Next, we characterize the relations R,L and D for the
monoid TX .

Theorem 3.4. Let f, g ∈ TX . Then in TX the following holds true:

1. f L g iff f(X) = g(X),

2. f R g iff ker(f) = ker(g),

3. f D g iff |f(X)| = |g(X)|.

Proof. 1. First, suppose there exist h, h′ : X → X such that, for all x ∈ X,
we have f(h(x)) = g(x) and g(h′(x)) = f(x). The first equation implies
g(X) ⊆ f(X), the latter the other inclusion. Hence f(X) = g(X).

1I avoid to say that H is a subgroup, as this notion is usually related to an overgroup, and
S is not assumed to be a group here or even to contain an identity element (and the identity
in H is in general only an idempotent of S).
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Conversely, if f(X) = g(X), then, for each x ∈ X, define a function
h : X → X by selecting some h(x) ∈ f−1(g(x)). Then, f(h(x)) = g(x) for
each x ∈ X. Similarly, we can find h′ : X → X such that f(x) = g(h′(x))
for x ∈ X.

2. Suppose there exists h : X → X such that h(f(x)) = g(x) for each x ∈ X.
Hence, if f(x) = f(y), then g(x) = h(f(x)) = h(f(y)) = g(y) and so
ker(f) ⊆ ker(g). The other inclusion follows similarly.

If ker(f) ⊆ ker(g), define h : X → X by setting h(f(x)) = g(x) for x ∈ X
and h(x) arbitrary for x /∈ f(X). As f(x) = f(y) implies g(x) = g(y), this
is in fact a well-defined function. Similarly, we find a function h′ : X → X
such that h′(g(x)) = f(x) for all x ∈ X.

3. By definition and the previous items, f D g iff there exists h : X → X
such that ker(f) = ker(h) and h(X) = g(X). As |X/ ker(f)| = |f(X)|
and |X/ ker(h)| = |h(X)| (this is the first homomorphism theorem in the
category of sets applied to f and g separately), we find |g(X)| = |h(X)| =
|X/ ker(f)| = |f(X)|.
Conversely, suppose |f(X)| = |g(X)| and let φ : f(X) → g(X) be a
bijective map. Define h : X → X by h(x) = φ(f(x)). Then h(x) = h(y)
iff f(x) = f(y) and so ker(h) = ker(f). Furthermore, h(X) = φ(f(X)) =
g(X). Hence, f D f .

Remark 3.5. Note that for a subsemigroup S of TX and f, g ∈ S, in general,
for example the condition |f(X)| = |g(X)| does not imply that f J g in S.

4 Permutation Automata

A semi-automaton A = (Q,Σ, δ) is a permutation automaton, if the maps (writ-
ten as fa in Section 2) q 7→ δ(q, a), for each a ∈ Σ, are permutations, i.e., bi-
jective mappings. Equivalently, the transformation monoid of A forms a group.
As the equations ax = b and xa = b are uniquely solvable for elements a, b in a
group G, we have G×G = H = R = L = J = D. Conversely, if H = S × S for
a semigroup S, then, by Theorem 3.3 (Green’s theorem), S is a group (in fact,
it is well-known and easy to see that a semigroup S forms a group if and only
if the equations ax = b and xa = b are solvable for arbitrary elements a, b ∈ S,
which essentially says that all elements are R-equivalent and L-equivalent and
so H-equivalent, which does not use Theorem 3.3).

So, an automaton is a permutation automaton iff in its transformation semi-
group, all elements are H-equivalent.

Observe that, by definition, a permutation automaton is complete and de-
terministic.

Almost immediately by the definition, a complete and deterministic automa-
ton is a permutation automaton, if it does not contain the pattern shown in
Figure 3.
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a

a

Figure 3: The forbidden pattern for permutation automata.

In a certain sense, a permutation automata can be seen as a finite permuta-
tion group (a subgroup of the set of all permutations on a set), and permutation
groups were investigated since the work of Galois, Lagrange, Cauchy or Jordan,
see [11] for a historical account of the genesis of permutation group theory.
However, the focus was different, and in the context of automata theory, per-
mutation automata were introduced, as it appears to be, by McNaugthon [10]
in connection with the star-height problem and by Thierrin [15].

The languages recognized by permutation automata are called (pure-)group
languages [10, 12]. The languages recognized by permutation automata whose
transformation monoid (as a group) falls within the following classes were in-
vestigated: commutative groups [12], solvable groups [3, 14] and supersoluble
groups [1].

Furthermore, three recent studies investigated the descriptional complex-
ity (more precisely the state complexity) of severals operations on permutation
automata [7], the projection operation [6] and the commutative closure opera-
tion [5].

5 Simple Transformation Semigroup

A semigroup S is simple, if all elements are J -equivalent. Here, we investigate
complete and deterministic automata whose transformation semigroup is simple.
The main result here is a forbidden-pattern characterization, see Figure 6 and
Theorem 5.7.

Remark 5.1. We will use Theorem 3.4 frequently here. By this result, if A has
a simple transformation semigroup, we can deduce that |δ(Q, u)| = |δ(Q, v)| for
all u, v ∈ Σ+.

Let A = (Q,Σ, δ) and set S = δ(Q, a) for some a ∈ Σ. If every letter b ∈ Σ
permutes S, i.e., δ(S, b) = S, and S = δ(Q, b), then TA is simple (in fact, in
this case all elements are L-equivalent). See Figure 5 for an example of such an
automaton. However, there are other examples as well, see Figure 4.

Obviously, every permutation automaton has a simple transformation semi-
group. The next gives a sufficient condition for the converse, more specifically,
if at least one letter permutes the states, then all letters do.

Proposition 5.2. Let A = (Q,Σ, δ) be a complete deterministic semi-automaton
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Element Image of Element Image of
1 2 3 4 5 6 1 2 3 4 5 6

a2b 2 3 4 5 2 5 ba 2 4 3 2 5 4
b2 2 4 5 2 3 4 a 2 5 4 3 2 3
ab 3 2 5 4 3 4 ab2a 3 4 5 2 3 2
b3 3 5 2 3 4 5 bab 3 5 4 3 2 5
b4 4 2 3 4 5 2 bab2 4 2 5 4 3 2
ab2 4 3 2 5 4 5 aba 4 5 2 3 4 3
a2 5 2 3 4 5 4 b2a 5 3 2 5 4 3
b 5 3 4 5 2 3 ab3 5 4 3 2 5 2

Table 1: The elements of the transformation semigroup of the automaton from
Figure 5. The image of the i-th state is written in the i-th column for each
element (i ∈ {1, 2, 3, 4, 4, 5, 6}) for the left and right part of the table.

· a a2 b b2 b3 b4 ab ab2 ab3 a2b ab2a aba ba bab bab2 b2a
a a2 a ab ab2 ab3 a a2b ab2a aba ab ab2 ab3 aba a2 a2b ab2a
a2 a a2 a2b ab2a aba a2 ab ab2a aba ab ab2a aba a2ba a ab ab2

b ba b b2 b3 b4 b bab bab2 b2a b2 b3 b4 b2a ba bab bab2

b2 b2a b2 b3 b4 b b2 ba bab bab2 b3 b4 b bab2 b2a ba bab
b3 bab2 b3 b4 b b2 b3 b2a ba bab b4 b b2 bab bab2 b2a ba
b4 bab b4 b b2 b3 b4 bab2 b2a ba b b2 b3 ba bab bab2 b2a
ab aba ab ab2 ab3 a ab a2 a2b ab2a ab aba a ab2a ab3 a a2b
ab2 a2 ab2 ab3 a ab ab2 aba a2 a2b ab3 a ab a2b ab2a aba a2

ab3 a2b ab3 a ab ab2 ab3 ab2a aba a2 aba a ab2 a2 a2b ab2a aba
a2b ab3 a2b ab2a aba a2 a2b a ab ab3 a2b aba a2 ab2 ab3 a ab
ab2a ab2 ab2a aba aba a2b ab2a ab3 a ab aba a2 a2b ab ab2 ab3 a
aba ab aba a ab ab2 ab3 ab ab2 a3 a2 a2b a2b a ab ab2 ab3

ba b ba bab bab2 b2a a2b bab b3 b4 bab bab2 b2 b4 b b2 bab2

bab b4 bab bab2 b2a ba baba b b2 b3 bab2 b2a ba b3 b4 b b2

bab2 b3 bab2 b2a ba bab bab2 b4 b b2 b2a ba bab b2 b3 b4 b
b2a b2 b2a ba bab bab2 b2a b3 b4 b ba bab bab2 b b2 b2 aba

Table 2: The Cayley (or multiplication) table for the transformation semigroup
of the automaton from Figure 5.
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a
a

b

b
· a b
a a b
b a b

∗ a
∗ b

Figure 4: Example of an automaton whose transformation semigroup is simple.
On the right the eggbox-diagram is drawn, we have two R-classes and a single
L-class.

1

2

5

3

4

6
a

aa, b

a, b

a, ba

b

b

b

a2b
a
ab
ab2a
ab2

aba
∗ a2

ab3

ba
b2

b3

bab
∗ baba
bab2

b2a
b

Figure 5: Example of an automaton whose transformation semigroup is simple.
On the right the eggbox-diagram is drawn, here, all elements are L-equivalent.

with a simple transformation semigroup. Suppose there exists a ∈ Σ such that
q 7→ δ(q, a), q ∈ Q, is bijective, then A is a permutation semi-automaton.

Proof. We have δ(Q, a) = Q. If b ∈ Σ, then by Theorem 3.4 applied to the
transformations induced by ab and a in TA, we find |δ(Q, ab)| = |Q|. As
δ(Q, ab) = δ(Q, b) ⊆ Q, we have δ(Q, b) = Q.

Corollary 5.3. Let A = (Q,Σ, δ) be a complete deterministic semi-automaton
with a simple transformation semigroup. Then A is a permutation automaton
if and only if the transformation semigroup contains an identity element.

Proof. If A is a permutation automaton, then there obviously exists u ∈ Σ+

acting like the identity on the states. Conversely, if u = u1u2 · · ·un with ui ∈ Σ
and δ(q, u) = q for each q ∈ Q, then we must have δ(Q, u1) = Q and by the
previous result A is a permutation automaton.

By the previous results, we can deduce that for transformation monoids,
simplicity is the same as saying the automaton is a permutation monoid (or the
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monoid a group). Hence, this concept only makes sense for semigroups that are
not monoids.

Proposition 5.4. Let A = (Q,Σ, δ) be a complete and deterministic semi-
automaton. Then the transformation monoid of A is simple if and only if A is
a permutation automaton.

Proof. If the transformation monoid only contains the identity transformation,
the claim holds true. So, suppose f is a non-identity element of it. Then there
exist g, h in the transformation monoid such that g(f(h(q))) = q for all q ∈ Q.
As f is a non-identity element, it is induced by a non-empty word u ∈ Σ+,
and similarly the concatenation of g, f and h is represented by some non-empty
word. So, the identity element is contained in the transformation semigroup
and by the previous claim, the result follows.

In more abstract semi-theoretical language, this can be reformulated the
following way.

Proposition 5.5. A finite monoid M is simple if and only if it is a group.

Proof. A group is certainly a simple monoid. Now suppose M is a simple and
finite monoid. By finiteness, there exists a finite generating set m1,m2, . . . ,mn

forM . LetA = (Q,Σ, δ) be the automaton with Q = M , Σ = {m1,m2, . . . ,mn}
and δ(m,mi) = mmi (this is essentially the right Cayley graph for the generat-
ing set). Then M is isomorphic to the transformation monoid and the transfor-
mation monoid is simple. By Proposition 5.4, A is a permutation automaton,
which is equivalent to the fact that the transformation monoid is a permutation
group. Hence, M is a group.

By the next result, every letter permutes its image.

Proposition 5.6. Let A = (Q,Σ, δ) be a complete and deterministic semi-
automaton with a simple transformation semigroup. Then, every letter permutes
its image, i.e., if S = δ(Q, a) for a ∈ Σ, then δ(S, a) = S.

Proof. We have δ(S, a) = δ(Q, aa) ⊆ δ(Q, a) = S. So, as with Theorem 3.4,
|δ(Q, aa)| = |S|, we find δ(S, a) = S.

By the previous result, if a ∈ Σ and t /∈ δ(Q, a), then there exists s ∈ δ(Q, a)
such that δ(t, a) = δ(s, a).

Next, we will show that the transformation semigroup of a given determin-
istic and complete semi-automaton is simple if and only if it does not contain
the pattern from Figure 6. This characterization is originally from [9, Lemma
15], but we give here a different proof with the help of Theorem 3.4.

Theorem 5.7. Let A = (Q,Σ, δ) be a complete deterministic semi-automaton.
The transformation semigroup of A is simple iff there does not exist p, q ∈ Q
and letters a, b ∈ Σ such that δ(p, a) ̸= δ(q, a) and δ(p, ab) = δ(q, ab).
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p

q

a

a

b

b

Figure 6: The forbidden pattern for automata whose transformation semigroup
is simple. See Theorem 5.7.

Proof. If the transformation monoid of A is simple, by Theorem 3.2 and 3.4,
|δ(Q, a)| = |δ(Q, ab)| for all a, b ∈ Σ. In particular, the map q 7→ δ(q, b) is
injective for q ∈ δ(Q, a), which gives the claim.

Conversely, if the condition holds true, this says precisely that, for all a ∈ Σ
and b ∈ Σ, the map q 7→ δ(q, b) is injective on δ(Q, a), which gives |δ(Q, a)| =
|δ(Q, ab)| for all a, b ∈ Σ. As the concatenation of injective maps is injective,
for every u ∈ Σ+ and a ∈ Σ, we have |δ(Q, au)| = |δ(Q, a)|. Furthermore, if v =
v1v2 · · · vn with vi ∈ Σ and n > 0, we have δ(Q, v) = δ(δ(Q, v1 · · · vn−1), vn) ⊆
δ(Q, vn). Combining with the previous sentence, for every u, v ∈ Σ+, we have
that |δ(Q, uv)| = |δ(Q, v)|. In particular, combining these facts, |δ(Q, v)| =
|δ(Q, v1)| ≤ |δ(Q, vn)|. So, for every a, b ∈ Σ, by considering v = ab, we have
|δ(Q, a)| ≤ |δ(Q, b)|. As a, b ∈ Σ were chosen arbitrary, this can only hold if
|δ(Q, a)| = |δ(Q, b)| for all a, b ∈ Σ (otherwise, fix two letters for which this
is not the case and apply the assumption with them swapped). This gives, as
before, for each u, v ∈ Σ+, that |δ(Q, u)| = |δ(Q, v)|.

1 2 3 4
a, b a, b

a, b

a, b

1 2

3

43

a

a

b

b

Figure 7: A non-simple automaton on the left that contains the forbidden pat-
tern drawn on the right for comparison.
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